= S GENESYS

@—

PureConnect®

2020 R1

Generated:

18-February-2020

Interaction Desktop Add-in

Content last updated:

13-June-2019 .
Technical Reference

for summary of
changes.

Abstract

This document provides a high-level overview of how and when to use
the Interaction Desktop Add-In APl to create add-ins. It includes
guidelines for creating installers and deploying add-ins.

For the latest version of this document, see the PureConnect
Documentation Library at: http://help.genesys.com/cic.

For copyright and trademark information, see
https://help.genesys.com/cic/desktop/copyright_and_trademark_information.htm.

http://help.genesys.com/cic
https://help.genesys.com/cic/desktop/copyright_and_trademark_information.htm

Table of Contents

Table of Contents
Introduction to Interaction Desktop Add-In

Add-In scenarios

Conditions

Versioning

Deploying an add-in

Writing an installer for an add-in

Creating Add-Ins

First Steps to Create Any Add-In

Writing a Screen Pop Add-In

Writing a Queue Monitor Add-In
Examining the Queue Monitor Code

Writing a Custom Window Add-In

Writing an Add-In for Any Purpose

Finishing Up

To Learn More

Appendix A: Creating Custom Secure Input Forms
Listing A-1: Example of API for custom secure input forms

Listing A-2: The SecurelnputAddin Class
Listing A-3: The CustomSecurelnput Class
Listing A-4: The MyForm Class

Change Log

O OO UTUTULDAWWWWWN

Introduction to Interaction Desktop Add-In

Note:

While the client system is called Interaction Desktop, the namespace and the actual APIs are called InteractionClient i.e.
ININ.InteractionClient.AddIn Namespace.

This technical reference provides a high-level view of scenarios and steps for creating add-ins. Detailed information about add-
in classes, methods, and other technical features can be found in the API help, which is available on the PureConnect Developer
Portal.

Add-In scenarios

Following are scenarios in which you might want to write an add-in:
e Create a Screen Pop
e Create a Queue Monitor (respond to interaction adds/changes/removes)

Conditions

Following are conditions for writing an add-in:
e Add-ins are not deployed or installed by PureConnect. Therefore, you must install and deploy them.
e [f you create an add-in, you must create an install for it.
e You must provide your own error checking and security.
e The key difference between using IceLib and DDE (customization points) is that you use IceLib to create a standalone
application. With an add-in, on the other hand, you must deploy your add-in DLL alongside the Interaction Desktop client.

e Screen pops are the only add-ins that require server-side configuration. Other add-ins, such as queue monitors, run only on the
user's client.

Versioning

As with any public API, versioning is a concern. The Interaction Desktop Add-in API takes a conservative approach to versioning by
using a specific API version number. This version is not the same as a file version number, which gets increased for each release.
The API version number is increased when a breaking change is made to the public API. Note that if the API changes only in an
additive, non-breaking way, then the version number will not increment. The version number will only increment when a breaking
change is made.

Note:

A breaking change is defined as a change to the public API that would require an add-in to be recompiled to accommodate the
change.

If they are required, breaking changes will only be made between full releases.

Interaction Desktop detects an add-in's version by the use of an assembly-level attribute,
ININ.InteractionClient.AddIn.AddInVersionAttribute. The Interaction Desktop Add-in assembly,
ININ.InteractionClient.AddIn.d11, contains this attribute specifying a specific version. Interaction Desktop will only load
add-ins that match the current version specified in ININ.InteractionClient.AddIn.d11. The current version can be
determined by using the ININ. InteractionClient.AddIn.AddInVersion.CurrentVersion field.

The version numbers must match to ensure that both the Interaction Desktop and the third-party add-in use the same API.

If an add-in exists with an incorrect version number, a trace message will be written into the Interaction Desktop's log file to help
with diagnostics.

Add-In developers are strongly encouraged to use the ININ. InteractionClient.AddIn.AddInVersion.CurrentVersion
field as described below in the "Creating Add-Ins" section. The field is defined as a const which means the value will be compiled
into the Add-In at compile time, and when the API version changes, a recompilation of the Add-In will be required to pick up the new
version. This allows developers to compile against an Add-In version without having to know the exact version number required.

Deploying an add-in

https://developer.inin.com/Pages/default.aspx

Deploying a single add-in is relatively simple procedure. To do so, just copy your add-in's DLL to a subfolder called Addins under the
directory in which Interaction Desktop is installed. For example,

C:\Program Files (x86)\Interactive Intelligence\ICUserApps\Addins
Or
C:\Program Files\Interactive Intelligence\ICUserApps\Addins

If the \Addins subfolder doesn't exist, create it. If the folder already exists, simply place your files in it.

Note:
l If your add-in references other DLLs, they must also be in the folder. l

Writing an installer for an add-in

You can use any of several tools or languages to create an install program for the add-ins that you develop. So, the only
requirement is that your installer copies the DLL for your add-in, and any other DLLs that your add-in references, to the \Addins
subfolder described above.

Creating Add-Ins

First Steps to Create Any Add-In
Writing a Screen Pop Add-In
Writing a Queue Monitor Add-In
Writing a Custom Window Add-In
Writing an Add-In for Any Purpose
Finishing Up

To Learn More

First Steps to Create Any Add-In

To write any add-in, regardless of its type, first do this:
1. In Visual Studio, create a class library for the add-in.
2. Inthe Visual Studio project, add a reference to the file:
ININ.InteractionClient.Addin.dll
You can find the file in the Interaction Desktop installation directory.
3. Inthefile AssemblyInfo.cs, inthe Assemblies section, add this line
[assembly: AddInVersion (AddInVersion.CurrentVersion)]

Writing a Screen Pop Add-In

To write a screen pop:
1. Inthe main C# file (e.g., Class1.cs), find the main namespace, which will have the same name as the project itself.
2. Inthe using section at the top of the C# file, add: using ININ.InteractionClient.AddIn;

This makes the DLL's namespace available.

Tip:
When you type an identifier that occurs in the Addin DLL, Visual Studio's Intellisense feature displays a list box of
available properties, methods, or parameters for that identifier.

3. Create a public class and give it a name related to the screen pop.

The name of the class does not matter. The new class should derive from
ININ.InteractionClient.AddIn.ScreenPop, Whichis definedinthe ININ.InteractionClient.AddIn.dll
assembly.

4. Override the base class's Pop method and Name property.
The original code (for a screen pop named "Foo") will look like this:

public class FooScreenPop : ScreenPop

{

public override void Pop (IDictionary<string, string>

attributes)
{

throw new NotImplementedException();

}

public override string Name

{
get { throw new NotImplementedException();

The modified code (for a screen pop named "Foo") will look like this:

public class FooScreenPop : ScreenPop

{
// Interaction Desktop will call this

method according to its
// corresponding screen pop configuration

in Interaction
// Administrator. The "attributes"

parameter will contain (at
// a minimum) all the name/value pairs

that were specified in
// Interaction Administrator.

public override void Pop (IDictionary<string, string>

attributes)
{
// For example:
string customerId = attributes["customer-id"];
// Then do some action

with values from attributes.
// For example:
CallMySpecificApplication (customerID) ;
}
// override the inherited Name field
// this must match the name in IA
public override string Name
{

get { return "Foo";

Writing a Queue Monitor Add-In

A queue monitor watches for specific interaction events in a queue and does actions based on those events. Writing a queue
monitor is slightly more complex than writing a screen pop, but is still fairly straightforward.

The ININ.InteractionClient.AddIn namespace defines a QueueMonitor class with three methods for monitoring queues
and performing actions in response to queue events:

o InteractionAdded: This method fires when an interaction is added to the queue. Inside this method, you can insert code to
check attributes of the interaction and perform actions based on attribute values.

e InteractionChanged: This method fires when a queue interaction changes. Inside this method, you can insert code to check
attributes of the interaction and perform actions based on attribute values.

¢ InteractionRemoved: This method fires when an interaction is removed from the queue.

To write a queue monitor add-in:

1. Create a class library as above. Derive it from the QueueMonitor abstract class inthe ININ. InteractionClient.AddIn
DLL.

2. Inthe main .cs file for the class, add this USING statement:
using ININ.InteractionClient.AddIn;
Tip:
When you type an identifier that occurs in the Addin DLL, Visual Studio's Intellisense feature displays a list box of available
properties, methods, or parameters for that identifier.

3. Override the inherited QueueMonitor methods as shown in the code below:

public class MyInteractionMonitor :
QueueMonitor
{
// Returns the list of attributes that
you want to
// monitor: that is, the attributes
for which you
// want to receive change notifications.
protected override IEnumerable<string>
Attributes
{
get
{
// The return
values here are *examples* of attributes.
return new
string[]
{
InteractionAttributes.State,
"Eic AnotherAttribute",
"Eic SomethingElse", };
}
}
protected override void
InteractionAdded (IInteraction interaction)
{
// code to
check attribute value and perform action
}
protected override void
InteractionChanged (IInteraction interaction)
{
string state
= interaction.GetAttribute (InteractionAttributes.State) ;
// code to
check attribute value and perform action
}
protected override void
InteractionRemoved (ITinteraction interaction)
{
}
}

Examining the Queue Monitor Code

The QueueMonitor-derived class that you create watches interactions. In particular, it watches the attributes of interactions that
you list in the Attributes property's return statement.

The attributes that you list in the Attributes property are the interaction's attributes that the add-in will monitor. The methods
(InteractionChanged, etc.) will only be called in response to changes in those attributes.

Standard system attributes are inthe ININ. InteractionClient.AddIn.InteractionAttributes static class. Using this
class avoids the need to know exact attribute names. You can, however, specify any string value: for example, to watch and access
a custom attribute.

If you don't remember the name of a standard attribute, Visual Studio's Intellisense feature will display a list of attributes from the
helper class for you.

If you have listed an interaction attribute in the Attributes property, you can retrieve the value of that attribute for an interaction
by using either the GetAttribute method or the indexer available on the TInteraction interface. For example:

string customerid = interaction.GetAttribute ("Customer ID");
or:
string customerid = interaction[”Customer ID”];

Here, you retrieve the value of the interaction's Customer ID attribute and store the value in your add-in's customerid string
variable.

Based on the value you retrieved, you could then make your queue monitor perform an action:

if (customerid.StartsWith ("preferred-"))

{
// do something

}

When using standard system attributes such as State, you can use the InteractionAttributes static class when specifying
the attribute to watch, and can use the InteractionAttributevValues static class to compare against known system values
the attribute can contain.

(abject alyibool
(vtrbng value)bool

Dietermnines whether thas nstance snd snother specified Bring object hne the
samie value
value: A ftring,

E.iﬂ_!g‘f'_g‘fﬂf:imf_a"m" € nmpin:unth]:hﬂul
4 Clags INIH Irderactionent Addin Irfeactordiobote: B
A5 Inderaction] SrbuteVales tate]:

Using this method, you might write:

string state = interaction.GetAttribute (InteractionAttributes.State);
if (state.Equals(InteractionAttributeValues.State.Connected))
{

// do something with the connected interaction

}

Writing a Custom Window Add-In

A custom window (or view) add-in for Interaction Desktop provides a client view that the user can select. It adds the custom view to
Interaction Desktop's tab-based user interface.

Note that custom views implemented in an add-in do not automatically appear in the user interface. The user must access the
Create New View dialog from the File menu and select the custom view. If users previously added the custom view, Interaction
Desktop will automatically display it the next time they start their Interaction Desktop.

You can use a custom view in the Interaction Desktop to host any user control or custom control.

The ININ.InteractionClient.AddIn namespace defines an AddInWindow class with a number of abstract properties to
override:

9

Id: The unique identifier of this view. This is used, for example, when the Interaction Desktop persists the open view (tabs)
during shutdown and re-creates each view on startup.

DisplayName: The friendly name of the view. This is displayed in the Create New View dialog when the user is selecting which
view to display in the Desktop client.

Categoryld: The unique identifier of the view's category. If you are adding multiple custom views and want them to appear in the
same category, this value must match for each view.

CategoryDisplayName: The friendly name of the category. This is displayed in the Create New View dialog.

Content: The user control or custom control to embed (docked to fill) inside the view when the view is created.

To write a custom view add-in:

1.
2.

In the main C# file (e.g., Class1.cs), find the main namespace, which has the same name as the project itself.

In the using section at the top of the C# file, add:

using ININ.InteractionClient.AddIn;

This makes the DLL's namespace available.
Tip:
When you type an identifier that occurs in the Addin DLL, Visual Studio's Intellisense feature displays a list box of available
properties, methods, or parameters for that identifier.

Create a public class and give it a name related to the custom window.

The name of the class does not matter. The new class should derive from
ININ.InteractionClient.AddIn.AddInWindow, which is definedinthe ININ.InteractionClient.AddIn.dl1l
assembly.

Right-click the project name (see figure), click Add, and click User Control.

=

w2 Mew leen. Crls Shfie & dd ,1
2 Emating em... ShiftsAns & Add Reference..

4 Mew Folder Add Weh Eeference...

Pl fecm Teenpilate v | Wiew Class Diagram

2 Wndiows Form.. St as StgetUp Project

& Ukser Condrol.. Debug 3
@] Component... A& Cut Crl=X

- Chaase ShifteARsC & Paxte
S S S

Finish creating the UserControl with the same method you normally use to create a UserControl. The example code in the
next step of this procedure creates a UserControl that contains a WebBrowser control named WebBrowserTabContent.

Override the base class properties specified above.
Add code for the UserControl that follows the pattern shown in this example:

public class WebBrowserAddInWindow : AddInWindow
{

protected override string Id

{
get { return "MY WINDOW"; }

}

protected override string DisplayName

{

get { return "Web Browser"; }

}

protected override string CategoryId

{
get { return "MY CUSTOM CATEGORY"; }

}

protected override string CategoryDisplayName

{
get { return "Web"; }

}

public override object Content

{

get { return new WebBrowserTabContent (); }

}

10

Creating an add-in as shown in the example results in a Create New View dialog.

[i& Create New View B

Cateqories: Views:
= Call Hitory 1

B isd Pad E

B Directosies Wek Browser
‘ﬁmmwﬁon
o Queves

wha Satishs

i Web

£ Undfied Messaging

After the user adds the Web Browser page, the new view is available in Interaction Desktop:

i Myloteractions | CallHistory | My Work ltems ' Web Browser |

11

Writing an Add-In for Any Purpose

You can create an add-in for any purpose. Because add-ins provide specific, simplified support for creating screen pops and queue
monitors, it's slightly more complicated to create an add-in for some other purpose. However, it's still fairly straightforward.

To write an add-in for some other purpose, you declare your add-in class and have it implement the TAdd1n interface. The IAddIn
interface has two methods:

e Load: When the Desktop client starts, it calls this method to load the add-in:
public void Load(IServiceProvider serviceProvider)

{

// The code here runs when the client loads the

add-in.

}

The serviceProvider parameter enables the add-in code to retrieve services from the client.
e Unload: When the Desktop client shuts down, it calls this method to unload the add-in:

public void Unload /()
{

// The code here runs when the client unloads the

add-in.

To write an add-in for a purpose other than a screen pop or queue monitor:
1. Inthe main C# file (e.g., Class1.cs), find the main namespace, which will have the same name as the project itself.
2. Inthe using section at the top of the C# file, add: using ININ.InteractionClient.AddIn;

This makes the DLL's namespace available.
Tip:

When you type an identifier that occurs in the Addin DLL, Visual Studio's Intellisense feature displays a list box of
available properties, methods, or parameters for that identifier.

3. Create a public class with the name of the add-in and make it implement the TAdd1In interface.

For example, to display a popup notification window when the add-in loads, you might write:

public class MyCustomAddin : IAddIn
{
public void Load(IServiceProvider serviceProvider)
{
INotificationService notification

= (INotificationService)serviceProvider.GetService (typeof (INotificationService));
notification.Notify ("My

add-in loaded!", "Success!", NotificationType.Info,
TimeSpan.FromSeconds (10)) ;
}
}
public void Unload()

{

// The code here runs when the client
unloads the add-in.

}

The pattern for using any Add-In service is the same as shown above for the notification service. You can find available services in
the ININ.InteractionClient.AddIn namespace. You can find more information in the APl documentation.

12

Finishing Up

After you have written an add-in of any type, build the project in Visual Studio just as you normally would. Then install the add-in and
make it available to the Desktop client.

For more information, see Creating Add-Ins.

To Learn More

To learn more about specific features of the Interaction Desktop Add-in, explore Programmable Add-In Help and XML files:
e ININ.InteractionClient.AddIn.chm
e ININ.InteractionClient.AddIn.xml

You can find those files in the Interaction Desktop installation directory.

13

Appendix A: Creating Custom Secure Input Forms

You can use the Add-In API to implement custom secure input forms. For more information, see the Secure Input Technical

Reference at https://help.genesys.com/cic/mergedProjects/wh_tr/desktop/pdfs/secure_input_tr.pdf.

Code listing A-1 gives an example of the API. It consists of the interfaces ISecureInput and ISecureInputForm.

To create a custom secure input form:
1. Write code that implements the ISecureInput interface.
2. Register that implementation with the ISecureInputService

Interaction Desktop uses the IsecureInputService to find and display the selected form when the agent clicks the Secure Input
toolbar button.

For more information, see the following:

e Listing A-1: Example of API for custom secure input forms
e Listing A-2: The SecurelnputAddin Class

e Listing A-3: The CustomSecurelnput Class

e Listing A-4: The MyForm Class

Listing A-1: Example of API for custom secure input forms

namespace ININ.InteractionClient.AddIn
{
/// <summary>
/// Provides access to a custom secure input. Implement this
/// interface and add an instance of the implementation
/// to the <see cref="ISecurelnputService"/> to make the custom
/// secure input available.
/// </summary>
/// <remarks>
/// A secure input is selected by the user. If the user selects a custom secure input,
/// the Interaction Desktop will use the matching named form which was added to the
/// <see cref="ISecurelnputService"/>.
/// Parameters configured by an administrator dictates what information is passed
/// into the <see cref="GetForm"/> method. In addition, interaction attributes
/// (if available) specified by the <see cref="AdditionalAttributes"/> property will be
/// included in the parameter dictionary given to the <see cref="GetForm"/> method.
/// </remarks>
///
public interface ISecurelnput
{
/// <summary>
/// Gets the name of this secure input. The name is used to find the secure input and activate it.
/// </summary>
/// <value>The name of the secure input.</value>
string Name { get; }

/// <summary>

/// Gets additional interaction attributes this secure input needs. These attributes

/// will be gathered and included in the parameter passed to the <see cref="GetForm"/> method
/// in addition to server-defined parameters.

/// </summary>

/// <value>The interaction attributes to retrieve.</value>

IEnumerable<string> AdditionalAttributes { get; }

/// <summary>
/// Gets the secure input form to display.
/// </summary>
/// <param name="parameters">The specified Interaction and secure input
/// parameters.</param>
ISecurelInputForm GetForm(IDictionary<string, string> parameters);
}
}
namespace ININ.InteractionClient.AddIn
{

/// <summary>

14

https://help.genesys.com/cic/mergedProjects/wh_tr/desktop/pdfs/secure_input_tr.pdf

/// A secure input form is a control (Windows Forms or WPF) that is embedded
/// into a containing window and shown to the user in order to collect information
/// before sending a caller into a secure IVR session.
/// </summary>
public interface ISecureInputForm
{
/// <summary>
/// Gets a value indicating the state of the form.
/// </summary>
/// <returns><see langword="true"/> if the data is valid and the user may proceed,
/// <see langword="false"/> if the user is not allowed to proceed with the
/// secure input form.</returns>
bool IsValid { get; }

/// <summary>

/// Occurs when the <see cref="IsvValid"/> property is changed.
/// </summary>

event EventHandler IsValidChanged;

/// <summary>

/// Gets a dictionary with the name/value pairs that will be provided to the secure IVR,
/// and to the 3rd party service processing the secure input session.

/// </summary>

IDictionary<string, string> SecureParameters { get; }

/// <summary>

/// Gets the main content to be displayed in the secure input window displayed to the user.
/// </summary>

/// <returns>

/// Return either a Windows Forms Control or a Windows Presentation Foundation Control.

/// Bny other return type will be ignored.

/// </returns>

object Content { get; }

With the API in Listing A-1, you can define three classes needed for secure input:
® SecureInputAddin.cs: Listing A-2. This class defines the Interaction Desktop add-in and implements the IAddIn interface.
e CustomSecurelInput.cs: Listing A-3. This class implements the TSecureInput interface.
e MyForm.cs: Listing A-4. This (partially implemented) class provides content for the custom secure input form.

15

Listing A-2: The SecurelnputAddin Class

namespace CustomSecureInputForm
{
public class SecureInputAddin : IAddIn
{
public void Load (IServiceProvider serviceProvider)
{
var securelnputService = serviceProvider.GetService (typeof (ISecurelnputService)) as ISecurelnputService;
if (secureInputService == null) return;
securelInputService.Add (new CustomSecurelnput());
}
public void Unload ()
{
t

This class defines the Interaction Desktop add-in and implements the TAddIn interface.

When Interaction Desktop loads the add-in, Interaction Desktop's Plug-in architecture calls the Load method. The
CustomSecureInputForm class uses the IServiceProvider that the Load method provides in order to:

e Retrieve the ISecureInputService

e Register a custom implementation of the TSecureInput interface with the Interaction Desktop's ISecureInputService. In
this case, the custom implementation is an instance of the CustomSecureInput class.

Interaction Desktop later uses IsecureInputService to access any of these custom secure input form implementations.

Listing A-3: The CustomSecurelnput Class

namespace CustomSecureInputForm
{
public class CustomSecurelnput : ISecurelnput

{

public string Name

{
get
{
return "CustomCreditCardProcessing";
}

}

public IEnumerable<string> AdditionalAttributes
{
get { return new string[O]; }

}

public ISecureInputForm GetForm(IDictionary<string, string> parameters)
{
var formProvider = new MyForm { ConnectionString =
parameters["database connection string"] };
return formProvider;

}

This class implements the ISecureInput interface.

The Name property defines the name of the secure input form and must match the form name used in Interaction Administrator. Use
the AdditionalAttributes property to specify any other interaction attributes required by the custom secure input form.

In the final section of code, Interaction Desktop calls the Get Form method when the agent clicks the Secure Input button and
selects a secure input form. Interaction Desktop gets an 1Dictionary of key-value pairs corresponding to the custom parameters
defined for the custom secure input form in Interaction Administrator. The example defines a database connection string in
Interaction Administrator as one of a form's Custom parameters. The parameter is named data base connection string.

16

Listing A-4: The MyForm Class

namespace CustomSecureInputForm
{
public partial class MyForm : UserControl, ISecurelnputForm

{

private bool isValid;

public MyForm()
{

InitializeComponent () ;
IsValid = false;
SecureParameters = new Dictionary<string, string>(StringComparer.OrdinalIgnoreCase);

}

public object Content
{

get

{

return this;

}

public bool IsValid
{

get

{

return isValid;

}

private set

{

if (_isValid == value) return;
_isvalid = value;
var evt = IsValidChanged;
if (evt != null)
{
evt (this, EventArgs.Empty);
}
}
public event EventHandler IsValidChanged;
public string ConnectionString { get; set; }
public IDictionary<string, string> SecureParameters { get; private set; }
private void btnLoad Click(object sender, EventArgs e)
{
// Hit a web service here, or something, to retrieve the values for the specified customer ID
string amount = "$ 142.12";
string address = String.Format ("7601 Interactive Way{0}Indianapolis, IN{0}46278", Environment.NewLine) ;

1blAmount.Text = amount;
1blAddress.Text = address;

SecureParameters["amount"] = amount;
SecureParameters["address"] = address;

IsValid = true;

This partial implementation of the ISecureInputForm interface uses a WinForms UserControl that provides the content for a
custom secure input form.

17

The code defines a mock form that pretends to access a database or web service to retrieve values with which to populate two form
fields. After the Load button is pressed:

e Data loads into two labels on the form
e The SecureParameters dictionary is updated with the new values
e The Isvalid property is setto true.

Those actions inform Interaction Desktop that prerequisite user input or activity is complete and that it can start the Secure IVR.

18

Change Log

The following table lists the changes to the Interaction Desktop Add-in Technical Reference since its initial release.

Date

Changes

16-November-2010

In the section "To Learn More," added the location of API help and XML files on the support site.

01-December-2010

Added section on writing a custom window.

30-March-2011

Updated the section "To Learn More" with the new location of the help files.

03-November-2011

Updated for IC 4.0.

15-February-2012

Updated two figures in the section "Writing a Custom Window Add-In."

10-August-2012

Added appendix about creating secure input forms.

15-August-2014

Updated documentation to reflect changes required in the transition from version 4.0 SU# to CIC 2015 R1,
such as updates to product version numbers, system requirements, installation procedures, references to
Interactive Intelligence Product Information site URLs, and copyright and trademark information.

22-June-2015

e Updated cover page to reflect new color scheme and logo.
e Updated copyright and trademark information.

e Changed the focus and name of the document from Interaction Client Programmable Add-in to

08-October-2015 ; :
Interaction Desktop Add-in.
e While the client system is called Interaction Desktop, the namespace and the actual APIs are called
InteractionClient i.e. ININ.InteractionClient.AddIn Namespace.
04-February-2016 | Updated documentation to reflect 2016 R2 Release
27-April-2018 Rebranded from Interactive Intelligence to Genesys.
13-June-2019 Reorganized the content only, which included combining some topics and deleting others that just had an

introductory sentence such as, "In this section...".

19

	Table of Contents
	Introduction to Interaction Desktop Add-In
	Add-In scenarios
	Conditions
	Versioning
	Deploying an add-in
	Writing an installer for an add-in

	Creating Add-Ins
	First Steps to Create Any Add-In
	Writing a Screen Pop Add-In
	Writing a Queue Monitor Add-In
	Examining the Queue Monitor Code

	Writing a Custom Window Add-In
	Writing an Add-In for Any Purpose
	Finishing Up
	To Learn More

	Appendix A: Creating Custom Secure Input Forms
	Listing A-1: Example of API for custom secure input forms
	Listing A-2: The SecureInputAddin Class
	Listing A-3: The CustomSecureInput Class
	Listing A-4: The MyForm Class

	Change Log

