
Interaction Client Add-In

developer.genesys.com

Quick Reference Guide

The Interaction Client Programmable Add-In API is used to customize and extend the
functionality of the desktop Interaction Client.

Add-In Use Cases
• Custom Screen pop handler
• Adding a new tab in the client view
• Placing Calls
• Watching the user’s queue
• Secure Input

First Steps to Create an Add-In
1. In Visual Studio, create a class library for the add-in. Make sure all add-in

classs are public otherwise the client will not be able to load them.
2. In the Visual Studio project, add a reference to the

ININ.InteractionClient.AddIn.dll file located in your Interaction Client
directory. (Make sure to set the CopyLocal property to false)

3. In the Assembly.cs file, in the Assemblies section, add this line

Queue Monitor Add-In
Queue monitor add-ins allow you to respond to interaction events (added, removed,
changed) on a queue. Use the QueueMonitor base class to assist with setting up the
watches and then override the base methods you need to use. Override the
Attributes property to specify the interaction attributes that you want to receive
events for. If there are interaction attributes that you need to access in an event
handler but don’t want to receive notifications when they change you can use the
SupportingAttributes property.

Client Tab Add-In
Add-Ins that create new client tabs can display custom WPF or WinForms controls in
the Interaction Client. When creating a new tab, use the AddInWindow base class
and implement the abstract properties on it.

CategoryDisplayName The friendly name of the category.
This is displayed in the Client Pages
dialog.

CategoryId The unique identifier of the
window’s category. If you are adding
multiple custom windows and want
them to appear in the same
category, this value must match for
each window.

Content The user control or custom control to
embed (docked to fill) inside the
window when the window is created

DisplayName The friendly name of the window.
This is displayed in the Client Pages
dialog when the user is selecting
which pages to display in the client.

Id The unique identifier of this window.
This is used, for example, when the
Interaction Client persists the open
windows (tabs) during shutdown and
re-creates each window on startup.

developer.genesys.com

The new window can be added to the client view by going into File -> New View. As
of CIC 4.0 SU 4, it is not possible to customize the image shown in the New View
Dialog

Screen Pop Add-In
Screen pop add-ins can leverage the screen pop functionality built into the IVR and
Interaction Administrator to provide data to the screen pop add-in. When
implementing a screen pop, you can use the ScreenPop base class and then override
the Name property and Pop method. The Pop method will be called when an ACD
interaction is alerting the user.

Configuration in IA
A custom screen pop action will need to be setup in Interaction Administrator. In
Interaction Administrator, go to the Actions Node under System Configuration and
create a new Action. When creating the screen pop, the Type must be Custom Screen
Pop

When editing the properties of the screen pop configuration, the input values are
what will get passed into the Pop method in your Add-in as the attributes dictionary.

 The Screen Pop Type of the custom screen pop action must match the
Name property in your screen pop Add-in

Enabling the Screen Pop
The final thing that must happen is that the screen pop needs to be enabled for a call.
This can be done by going to the Actions section of the ACD tab in a workgroup
configuration and setting the Alerting Action to your newly created screen pop action.
The other way is to use the Screen Pop node in Interaction Attendant to enable
screen pop for any calls that flow through your IVR. This allows you to customize the
data that is sent into the screen pop.

Deploying Your Add-In
An add-in is a simple DLL file that requires no other libraries and needs to be copied in
the Program Files\Interactive Intelligence\ICUserApps\AddIns folder. The “AddIns”
folder needs to be created if it is not there. If your add-in references other DLLs, they
must also be copied in the same folder. If you end up referencing IceLib, be sure to
not copy those files into the AddIns directory as they will already have been loaded by
the Interaction Client

Use the following registry key value to determine the install location of the
Interaction Client .NET edition:

HKEY_LOCAL_MACHINE\SOFTWARE\Interactive Intelligence\Installed\Interaction
Client .Net Edition\InstallDir

Getting an IceLib Session in your Add-In
In order to be able to use the Session, you must have the IceLib license
I3_FEATURE_ICELIB_SDK. Inside your Add-In, you have access to the IServiceProvider
and as long as you have the IceLib license, you can get the session out of the service
provider.

Make sure that in your visual studio project that you are NOT copying the IceLib dlls
to the Addins folder. Doing so will cause a duplicate, and possibly different version of
the dlls from what the client uses and can cause the .GetService method call to return
null.

©2018 Genesys Telecommunications Laboratories, Inc.

www.genesys.com

	Add-In Use Cases
	First Steps to Create an Add-In
	Queue Monitor Add-In
	Client Tab Add-In
	Screen Pop Add-In
	Configuration in IA
	Enabling the Screen Pop

	Deploying Your Add-In
	Getting an IceLib Session in your Add-In

