
PureConnect®

2019 R3

Generated:

22-October-2019

Content last updated:

20-June-2019

See Change Log for summary of
changes.

CIC Web Applications

Installation and Configuration Guide

Abstract

This installation and configuration content describes configuration
settings needed to install CIC Web Applications on IIS, Apache, or Nginx
servers. It also includes information about load balancing and
troubleshooting, and enabling HTTPS.

For the latest version of this document, see the PureConnect
Documentation Library at: http://help.genesys.com/cic.

For copyright and trademark information, see
https://help.genesys.com/cic/desktop/copyright_and_trademark_information.htm.

1

http://help.genesys.com/cic
https://help.genesys.com/cic/desktop/copyright_and_trademark_information.htm

2
3
4
5
6
7
8
9
9

10
10
16
17
18
18
19
19
19
20
22
22
22
23
24
25
25
25
26
27
27
27
29
29
29
29
29
30
31
31
31
32
35

Table of Contents
Table of Contents
About the CIC Web Applications Installation and Configuration Guide
Web server requirements
Transport Layer Security
Parent directories
Prerequisites
Installation Overview for IIS, Apache, and Nginx
Install CIC Web Applications on Microsoft IIS

Step 1: Add Required IIS Services
Step 2: Download and Copy CIC Web Applications Files
Step 3: Configure IIS
Enable HTTPS between the web browser and IIS

Step 1: Add a Certificate to the Web Server
Step 2: Bind the Certificate to the HTTPS port
Step 3: Enable SSL on the Site

Enable HTTPS between IIS and CIC
Step 1: Change inbound rule to use HTTPS
Step 2: Trust the CIC server HTTPS certificate

Install CIC Web Applications on Apache
Enable HTTPS between the web browser and Apache

Step 1: Generate certificate signing request
Step 2: Add the signed certificate to the server

Enable HTTPS between Apache and CIC
Install CIC Web Applications on Nginx

Enable HTTPS between the web browser and Nginx
Step 1: Generate certificate signing request
Step 2: Add the signed certificate to the server

Enable HTTPS between Nginx and CIC
Application Configuration

servers.json
altHostHints

Application updates (subsequent installs)
Back up existing applications
Upgrade Interaction Connect
Copy files to the web server
Rollbacks

Load balancing multiple web servers
Troubleshooting

On IIS, the CIC Web Application's main.js takes a long time to load when compression is enabled
On IIS, a slow request becomes faster after reloading the resource multiple times

Appendix A: IIS XML Configuration
Change Log

2

About the CIC Web Applications Installation and
Configuration Guide
The CIC Web Applications Installation and Configuration Guide describes the configuration settings needed to install CIC Web
Applications on IIS, Apache, or Nginx web servers. It assumes you are installing all of the CIC Web Applications at once. However,
you can install individual applications by placing the appropriate application folders in the CIC Web Applications folder created
following the process described in the guide.

These installation instructions are for a first-time installation of the CIC Web Applications. For information about applying
upgrades, see Application updates (subsequent installs).

Download the CIC Web Applications from the PureConnect Product Information site at
https://my.inin.com/products/Pages/Downloads.aspx.

Note:
CIC Web Applications 2015 R2 and later contain the IPA Stand-alone Web Client, Optimizer Web Features, Interaction Connect,
and CX Insights.

3

https://my.inin.com/products/Pages/Downloads.aspx

Web server requirements
You can install CIC Web Applications on any of the following web servers:

Apache 2.4
Supported with Windows Server 2012 R2 and higher
Apache may work with Linux OS, but this combination is not tested or supported by Genesys.
If installing on Windows, you can find 2.4.x versions at http://www.apachehaus.com/cgi-bin/download.plx or
http://www.apachelounge.com/download/
IIS 8.5 (Verified with Windows Server 2012 R2)
IIS 10 (Verified with Windows Server 2016 on CIC 2018R2 and higher)

Application Request Routing extension (https://www.microsoft.com/en-us/download/details.aspx?id=47333)
URL Rewrite extension (https://www.microsoft.com/en-us/download/details.aspx?id=47337)

Nginx
Supported with Windows Server 2012 R2 and higher
Nginx may work with Linux OS, but this combination is not tested or supported by Genesys.
No additional modules are necessary.

4

http://www.apachehaus.com/cgi-bin/download.plx
http://www.apachelounge.com/download/
https://www.microsoft.com/en-us/download/details.aspx?id=47333
https://www.microsoft.com/en-us/download/details.aspx?id=47337

Transport Layer Security
The recommended setup for CIC Web Applications uses a separate web server and Customer Interaction Center server. In this
setup, the web server is used as a reverse proxy to communicate with Interaction Center Web Services (ICWS) on a Customer
Interaction Center server.

There are two legs of communication you can encrypt in a CIC web applications deployment.

Configuration of encryption for each leg is independent of configuration for the other leg: you can encrypt either, both, or neither leg
of traffic.

The front-end connection between the web browser and the web server
To avoid credential theft, the recommended deployment is to encrypt this connection.
The back-end connection between the web server and the CIC server
If your web server and CIC server(s) are in the same secured environment, the recommended deployment is to use HTTP
between the web server and CIC to reduce load on the CIC server.
However, you can also secure the connection between the web server and the CIC server. In order to do so, use the correct
HTTPS port noted in the instructions for your server.

To enable encryption, see the instructions for your server type:
IIS: Enable HTTPS between the web browser and IIS and Enable HTTPS between IIS and CIC
Apache: Enable HTTPS between the web browser and Apache and Enable HTTPS between Apache and CIC
Nginx: Enable HTTPS between the web browser and Nginx and Enable HTTPS between Nginx and CIC

5

Parent directories
You host CIC Web Applications at the root of web servers. However, if there are additional parent directories, the rewrite rules will
also work.

The default setup application is located at http://webServer/application, but the rewrite rules will continue to work if your URLs need
to follow a pattern such as http://webServer/ININWebApps/application. Note that in this scenario, you may need to modify some of
the configuration file entries to avoid affecting non-CIC web applications.

If a parent directory is named api, modify the URL rewrite rules as needed.

6

Prerequisites
No reverse proxies should exist in front of the one created for CIC Web Applications. If there are multiple reverse proxies in
your environment, it is crucial that the same rewrite rules for HTTP headers X-Forwarded-For and ININ-ICWS-Original-URL are
also set up in each reverse proxy. At minimum, they must be set up in the reverse proxy that client requests hit first.
If you use the same reverse proxy for CIC Web Applications and Genesys Intelligent Automation, then the Intelligent Automation
rewrite rule must come before the CIC Web Application rule. For more information, see the PureConnect Integration with
Genesys Intelligent Automation Technical Reference.
Forward proxies must not change the "Host" header of clients' requests, or CIC Web Applications may not be fully functional.

Before beginning the installation process, verify that
Your web server is accessible from client computers. Make firewall modifications as needed.
Your CIC server (and any OSSMs) are accessible from your web server. Make firewall modifications as needed: the web server
will communicate with ICWS over port 8018 (or port 8019 if you are securing each ICWS endpoint with certificates).
The appropriate level of security is set up on your web server. Genesys requires that your front-end web server is at least
secured via TLS.
Your web server(s) (and any proxies) are configured to forward any HTTP header without modifying it. A primary example is X-
Forwarded-For, which is unchanged by default in IIS, Apache, and Nginx.

7

https://help.genesys.com/cic/mergedProjects/wh_tr/desktop/pdfs/intelligent_automation_tr.pdf

Installation Overview for IIS, Apache, and Nginx
For all server types, download and unzip the CIC Web Applications files and move the files to your web server’s document root.

The remaining instructions for installing CIC Web Applications vary depending on your web server software. Although the details
vary, the general steps are as follows:

Install and Configure your Web Server Software (IIS, Apache or Nginx).
Create the application pool that will be used by the new CIC Web Application Site. (IIS only).
Create the CIC Web Application site.
Create the rewrite rules that will be used for this site. This section will include adding the rules, the required server variables,
and the rewrite map.
Configure the required MIME types for the site. This will ensure that all the necessary files for the applications will be loaded.
Restart the web server and test the new site.

Note:
You must use the latest version of the CIC Web Applications, even if your main CIC server is at a previous release level.

8

Install CIC Web Applications on Microsoft IIS
For a basic working installation, such as for a test environment, complete the following steps:

Step 1: Add Required IIS Services
Step 2: Download and Copy CIC Web Applications Files
Step 3: Configure IIS

For a production environment, you can also follow the instructions in the following:
Enable HTTPS between the web browser and IIS
Enable HTTPS between IIS and CIC
Application Configuration.

Step 1: Add Required IIS Services
For information about all the installation steps, see Install CIC Web Applications on Microsoft IIS.

To add required IIS services
1. In Server Manager, verify that the Web Server Role (IIS 7) is added with the following (minimum required) role services installed:

Common HTTP Features
Static Content
Default Document

Performance
Static Content Compression

Security
Request Filtering

Management Tools
IIS Management Console

2. If you have not installed the Application Request Routing and URL Rewrite extensions, install them.
Application Request Routing extension (https://www.microsoft.com/en-us/download/details.aspx?id=47333)
URL Rewrite extension (https://www.microsoft.com/en-us/download/details.aspx?id=47337)

3. Enable server as proxy and enable response buffering:
a. In IIS Manager, click your server.
b. Double-click the Application Request Routing Cache module.
c. In the Actions pane, click Server Proxy Settings.
d. Check Enable proxy.
e. Change the Response buffer threshold (KB) setting under "Buffer Setting" to 0.
f. Click Apply.

4. Verify that index.html and index.htm are present as Default Documents.

9

https://www.microsoft.com/en-us/download/details.aspx?id=47333
https://www.microsoft.com/en-us/download/details.aspx?id=47337

Step 2: Download and Copy CIC Web Applications Files
For information about all the installation steps, see Install CIC Web Applications on Microsoft IIS.

To download and copy CIC Web Applications files
1. In Windows Explorer, create a directory in the Home Directory in IIS for the CIC Web Applications. In a default IIS installation,

the Home Directory is C:\\inetpub\wwwroot. Verify that IIS has the appropriate permissions for that newly created
directory.

Note:
In this example, the directory is ININApps.

2. Download the CIC Web Applications zip file from https://my.inin.com/products/Pages/Downloads.aspx. All the web
applications are contained in this single zip.

3. Unzip the CIC Web Applications folder.
4. Navigate to the web_files folder inside the unzipped CIC Web Applications folder.
5. Copy all of the folders inside of web_files. Each folder contains one CIC web application.
6. Paste the folders copied in the previous step into the directory you created in step 1. Doing so places the appropriate directory

structure and files for all CIC Web Applications on your web server.
Following is an example directory structure for CIC Web Applications in IIS.

Step 3: Configure IIS
For information about all the installation steps, see Install CIC Web Applications on Microsoft IIS.

To configure IIS
1. Create a new Site named ININApps in IIS:

a. Right-click on Sites and choose Add web site.
b. In the dialog box, set the Content Directory Physical path to the CIC Web Applications folder you previously created in your

server's Home Directory.

10

https://my.inin.com/products/Pages/Downloads.aspx

2. Remove the .NET Framework version of the application pool:
a. In the IIS Manager side pane, click Application Pools.
b. Right-click the newly created ININApps application pool.
c. Click Basic Settings.
d. Change the .NET Framework version to "No Managed Code."
e. Click OK.

3. Enable static content compression on the new Site:
a. Click the site in IIS Manager.
b. Double-click the Compression module.
c. Check Enable static content compression.
d. Click Apply.

4. Update the maximum URL and query string size in Request Filtering, if enabled:
a. Click the site in the IIS Manager.
b. Double-click on the Request Filtering module, if enabled. If the module doesn't appear, Request Filtering is not enabled.
c. Select the URL tab in the Request Filtering view.
d. Click on Edit Feature Settings in the Actions pane.

i. Update Maximum URL Length (bytes) to "8192".
ii. Update Maximum Query String (bytes) to "8192".

iii. Update Maximum allowed content length (bytes) to something greater than or equal to "20971520".
e. Click OK.

5. Add allowed server variables:

Note:
Steps 6 through 10 can alternatively be completed using XML configuration file. See Appendix A for XML configuration.

a. Click the site in the IIS Manager.
b. Double-click on the URL Rewrite module.
c. In the Actions pane, click View Server Variables.
d. Create the following three server variables by clicking Add in the Actions pane.

WEB_APP
ICWS_HOST
HTTP_ININ-ICWS-Original-URL

6. Create the rewrite map.

11

a. Click the site in the IIS Manager.
b. Double-click the URL Rewrite module.
c. In the Actions pane on the right, click View Rewrite Maps.
d. Click Add Rewrite Map.
e. Enter MapScheme for the rewrite map name.
f. In the Actions pane, click Add Mapping Entry.
g. Type the following:

Original value: New value:
on https

h. Repeat steps f and g with the following information:

Original value: New value:
off http

7. Create URL rewrite rules. You will create one inbound rule and two outbound rules.
a. Click the site in the IIS Manager.
b. Double-click the URL Rewrite module.
c. Navigate to the Actions pane and select Add Rule(s).
d. For each rule, select Blank rule under the appropriate type (Inbound rule or Outbound rule).
e. Enter the following information for each rule. Tables are provided for ease of copying values, followed by screenshots for

each rule.

Note:
Do not add conditions for any of the rules.

Inbound rule
This rule allows the client to reach the Session Manager host that ICWS is served from.

Name inin-api-rewrite

Requested URL Matches the Pattern

Using Regular Expressions

Pattern (?:^(.*/)api|^api)/([^/]+)(/.*)
Ignore case checked

Server Variables See "Server Variables" table below

Action type Rewrite

Rewrite URL
(see "Configure HTTPS for IIS" for HTTPS)

http://{ICWS_HOST}:8018{R:3}

Append query string checked

Log rewritten URL checked

Stop processing of subsequent rules checked

Server Variables

Name Value Replace
WEB_APP {R:1} True
ICWS_HOST {R:2} True
HTTP_ININ-ICWS-Original-URL {MapScheme:{HTTPS}}://{HTTP_HOST}{UNENCODED_URL} False

12

Outbound rule 1
This rule allows the cookies required by ICWS and the client to be located where the client needs them.

Name inin-cookie-paths

Precondition <None>

Matching scope Server Variable

Variable name RESPONSE_Set_Cookie

Variable value Matches the Pattern

Using Regular Expressions

Pattern (.*)Path=(/icws.*)
Ignore case checked

Action type Rewrite

Value {R:1}Path=/{WEB_APP}api/{ICWS_HOST}{R:2}
Replace existing server variable value checked

Stop processing of subsequent rules unchecked

13

Outbound rule 2
This rule adjusts the location header

Name inin-location-paths

Precondition <None>

Matching scope Server Variable

Variable name RESPONSE_location

Variable value Matches the Pattern

Using Regular Expressions

Pattern ^/icws/.*
Ignore case checked

Action type Rewrite

Value /{WEB_APP}api/{ICWS_HOST}{R:0}
Replace existing server value checked

Stop processing of subsequent rules unchecked

14

When you are finished, you will have one inbound rule and two outbound rules:

8. (Optional) Increase the cache sensitivity thresholds if you have application load performance issues.
a. In Configuration Editor, select the system.webServer/serverRuntime section.
b. Update frequentHitThreshold to 1.
c. Update frequentHitTimePeriod to 00:10:00.

9. Enable static content caching for Interaction Connect:
The following table summarizes the cache settings. Steps to configure cache settings follow.

Note:
Client/addins and client/config do not exist in a new installation. If you plan to user servers.json or create
custom add-ins, use the cache settings below for those folders.

Recommended cache settings

Directory or file Expire web content:
client/lib After 365 days

client/addins Immediately

client/config Immediately

client/index.html After 15 minutes

a. Expand the site in the tree view and select the client/lib folder.
b. Double click the HTTP Response Headers module.
c. Click Set Common Headers.
d. In the dialog box:

i. Check Expire Web content.
15

ii. Select After and enter 365 days in the fields.
e. Click OK.
f. Repeat steps 1-5 for the client/addins and client/config directories with the following difference:

Select Immediately under Expire web content.
g. Right-click on the client folder and select Switch to Content View.
h. Select index.html.
i. In the Actions pane click Switch to Features View.
j. Repeat steps b-e for index.html (which should now show up under client). This time set the After expires field to 15

minutes.
10. Verify that the following MIME types are defined in the IIS Manager for the ININApps Site by double clicking the MIME Types

module:
.css -> text/css
.gif -> image/gif
.html -> text/html
.jpg -> image/jpeg
.js -> application/x-javascript
.json -> application/json
.otf -> application/octet-stream
.png -> image/png
.svg -> image/svg+xml
.ttf -> application/octet-stream
.woff -> font/x-woff
.woff2 -> application/font-woff2

11. (Optional) If you want to set the CIC server that the CIC Web Applications connect to, follow the instructions in "servers.json".
12. Restart the IIS server by using the iisreset command line application.
13. Verify that all applications work as expected.

The basic installation tasks are complete, and the CIC Web Applications should be functional. To enable encryption, see Enable
HTTPS between the web browser and IIS and Enable HTTPS between IIS and CIC.

Enable HTTPS between the web browser and IIS
Complete the following tasks to encrypt the connection between the web browser and the web server:

Step 1: Add a Certificate to the Web Server
Step 2: Bind the Certificate to the HTTPS port
Step 3: Enable SSL on the Site

16

You can use either a self-signed certificate or a third-party certificate. For information about all the steps to enable HTTPS between
the web browser and IIS, see Enable HTTPS between the web browser and IIS.

Create a self-signed certificate

If you choose a self-signed certificate, client workstations need to trust that certificate after it is installed on the web server. For
this reason, self-signed certificates are usually used only for testing.

To create a self-signed certificate
1. On the web server, open IIS Manager.
2. In the Connections pane, select the CIC web applications server.
3. Double-click the Server Certificates module.
4. In the Actions pane, click Create Self-Signed Certificate.
5. In the Create Self-Signed Certificate window:

a. Type a name for the certificate.
b. Select Web Hosting for the certificate store.

6. Click OK.

Use a third-party certificate

To use a third-party certificate, create a certificate signing request.

Create certificate signing request

To create a certificate signing request
1. On the web server, open IIS Manager.
2. In the Connections pane, select the CIC web applications server.
3. Double-click the Server Certificates module.
4. Click Create Certificate Request to create a certificate signing request (CSR).
5. In the Request Certificate window, provide the information for your organization.
6. For Common name, type the fully-qualified domain name of the server (for example, www.example.com) and then click Next.
7. Choose the appropriate Cryptographic Service Provider Properties and then click Next. Ask your third-party certificate authority

(CA) which options to choose.
8. Type a file name and location for the CSR and then click Finish.
9. Send the generated CSR to your CA for signing.

Complete certificate request

To complete the certificate request
1. Copy the signed certificate you received from the certificate authority to your web server.
2. In IIS Manager, open the Server Certificates Module.
3. Click Complete Certificate Request.
4. In the Specify Certificate Authority Response window:

Select the signed certificate you copied to your web server.
Enter a friendly name for the certificate.
Select Web Hosting for the certificate store.
Click OK.

Step 1: Add a Certificate to the Web Server

17

For information about all the steps to enable HTTPS between the web browser and IIS, see Enable HTTPS between the web browser
and IIS.

To bind the certificate to the HTTPS port
1. In the Connections pane, click the Site for the CIC Web Applications, named ININApps in this document.
2. In the Actions pane, click Bindings and then click Add.

3. Change the Type to https.
4. In the SSL certificate list, select the certificate you previously created or imported and then click OK.
5. Click Close.

For information about all the steps to enable HTTPS between the web browser and IIS, see Enable HTTPS between the web browser
and IIS.

To enable SSL on the site
1. In the Connections pane, click the Site for the CIC Web Applications, named ININApps in this document.
2. Double-click the SSL Settings module.
3. Check Require SSL.
4. In the Actions pane, click Apply.
5. Complete the steps to Enable HTTPS between IIS and CIC.

If you used a self-signed certificate, client workstations need to trust the certificate.

Step 2: Bind the Certificate to the HTTPS port

Step 3: Enable SSL on the Site

18

Enable HTTPS between IIS and CIC

Tip:
Best practice is to use HTTPS from CIC to IIS and from IIS to the web browser, or from IIS to the web browser only. Securing
traffic from IIS to CIC only can cause issues with Secure cookies.

Complete the following tasks to encrypt the connection between the web server and the CIC server. Ensure that you complete the
steps to Enable HTTPS between the web browser and IIS first.

To change the inbound rule to use HTTPS
1. On your web server, open IIS Manager and then expand Sites.
2. Select your web site (for example, ININApps).
3. Double-click the URL Rewrite module.
4. Open the Inbound Rule inin-api-rewrite.
5. In the Rewrite URL field, change the Rewrite URLto use HTTPS:

a. Change the protocol to https.
b. Change the port to 8019.

6. In the Actions pane, click Apply.

Note:
If the Servername_Certificate.cer file has a Certificate Chain, then you must trust all the certificates in the Chain. Check
to see if Issued To and Issued By are different names. If you do not trust all the certificates in the chain, the certificate can't be
validated and the SSL handshake will fail. Repeat this task for each Session Manager device in your environment (including both
CIC Servers and any Off-Server Session Managers.)

To trust the CIC server HTTPS certificate
1. Locate the HTTPS certificate on your CIC server. The default location is \I3\IC\Certificates\HTTPS.
2. Copy Servername_Certificate.cer to your web server.
3. On your web server, locate the copied HTTPS certificate and then double-click the certificate.
4. Click Install Certificate.
5. Select Local machine and then click Next.
6. Select Place all certificates in the following store.
7. To choose the certificate store, click Browse and select Trusted Root Certification Authorities.
8. Click OK.
9. Click Next.

10. Click Finish.

Step 1: Change inbound rule to use HTTPS

Step 2: Trust the CIC server HTTPS certificate

19

Install CIC Web Applications on Apache
To install CIC Web Applications on Apache
1. Create a folder in the document root of your web server for the CIC Web Applications. Verify that your web server software has

the appropriate permissions for that newly created folder.

Note:
In this example, the folder is ININApps.

2. Download the CIC Web Applications zip file from https://my.inin.com/products/Pages/Downloads.aspx. All the web
applications are contained in this single zip.

3. Unzip the CIC Web Applications folder.
4. Navigate to the web_files folder inside the unzipped CIC Web Applications folder.
5. Copy all of the folders inside of web_files. Each folder contains one CIC web application.
6. Paste the folders copied in the previous step into the directory you created in step 1. Doing so places the appropriate directory

structure and files for all CIC Web Applications on your web server.

The following actions take place in the Apache server's /conf/httpd.conf file.
1. Set the following minimally required modules to be loaded:

One or more auth* modules that are appropriate for your web server
dir_module modules/mod_dir.so
env_module modules/mod_env.so
expires_module modules/mod_expires.so
headers_module modules/mod_headers.so
mime_module modules/mod_mime.so
proxy_module modules/mod_proxy.so
proxy_http_module modules/mod_proxy_http.so
rewrite_module modules/mod_rewrite.so
setenvif_module modules/mod_setenvif.so

2. Change the DocumentRoot as well as the single <Directory> section to point to the CIC Web Applications folder
3. Change the DirectoryIndex property to contain index.html and index.htm
4. If LimitRequestBody is set to something other than 0, ensure that you increase it to something greater than or equal to

20971520 (bytes).
5. Set up the proxy rewrite rules:

a. If Apache is set up for HTTP (possibly in addition to HTTPS), add the following URL rewrite rules at the bottom of
httpd.conf:

RewriteEngine On
RewriteRule "^(/.*|)/api/([^/]+)(/.*)" "http://$2:8018$3"

 [P,E=WEB_APP:$1,E=ICWS_HOST:$2,E=ICWS_PATH:$3,E=HTTP_HOST:%{HTTP_HOST},E=REQUEST_URI:%
{REQUEST_URI},E=SCHEME:%{REQUEST_SCHEME}]
If you are securing the ICWS host(s), use the following configuration

 in place of the RewriteRule above:
SSLProxyEngine on
RewriteRule "^(/.*)/api/([^/]+)(/.*)" "https://$2:8019$3"

 [P,E=WEB_APP:$1,E=ICWS_HOST:$2,E=ICWS_PATH:$3,E=HTTP_HOST:%{HTTP_HOST},E=REQUEST_URI:%
{REQUEST_URI},E=SCHEME:%{REQUEST_SCHEME}]
Header edit Set-Cookie "(.*)Path=(/icws.*)" "$1Path=%{WEB_APP}e/api/%{ICWS_HOST}e$2"

20

https://my.inin.com/products/Pages/Downloads.aspx

Header edit Location "^(/icws.*)" "%{WEB_APP}e/api/%{ICWS_HOST}e$1"
SetEnvIf "ININ-ICWS-Original-URL" ".+" HAVE_ININICWSOriginalURL
RequestHeader set "ININ-ICWS-Original-URL" "%{SCHEME}e://%{HTTP_HOST}e%{REQUEST_URI}e"

 env=!HAVE_ININICWSOriginalURL

b. If Apache is set up for HTTPS (possibly in addition to HTTP), add the following URL rewrite rules to the appropriate
VirtualHost section(s) of httpd-ssl.conf or httpd-sni.conf:

RewriteEngine On
RewriteRule "^(/.*|)/api/([^/]+)(/.*)" "http://$2:8018$3"

 [P,E=WEB_APP:$1,E=ICWS_HOST:$2,E=ICWS_PATH:$3,E=HTTP_HOST:%{HTTP_HOST},E=REQUEST_URI:%
{REQUEST_URI},E=SCHEME:%{REQUEST_SCHEME}]
If you are securing the ICWS host(s), use the following configuration

 in place of the RewriteRule above:
SSLProxyEngine on
RewriteRule "^(/.*)/api/([^/]+)(/.*)" "https://$2:8019$3"

 [P,E=WEB_APP:$1,E=ICWS_HOST:$2,E=ICWS_PATH:$3,E=HTTP_HOST:%{HTTP_HOST},E=REQUEST_URI:%
{REQUEST_URI},E=SCHEME:%{REQUEST_SCHEME}]
Header edit Set-Cookie "(.*)Path=(/icws.*)" "$1Path=%{WEB_APP}e/api/%{ICWS_HOST}e$2"
Header edit Location "^(/icws.*)" "%{WEB_APP}e/api/%{ICWS_HOST}e$1"
SetEnvIf "ININ-ICWS-Original-URL" ".+" HAVE_ININICWSOriginalURL
RequestHeader set "ININ-ICWS-Original-URL" "%{SCHEME}e://%{HTTP_HOST}e%{REQUEST_URI}e"

 env=!HAVE_ININICWSOriginalURL

6. Configure caching for Interaction Connect:
Add the following to conf/httpd.conf:

<DirectoryMatch "/client/">
ExpiresActive On
<FilesMatch "index.html?$">
ExpiresDefault "access plus 15 minutes"
</FilesMatch>
<FilesMatch ".(?:js|css|jpe?g|ico|png|gif|svg|ttf|woff|otf|eot|mp3|wav|ogg)$">
ExpiresDefault "access plus 1 year"
</FilesMatch>
</DirectoryMatch>
<DirectoryMatch "/client/(?:addins|config)/">
<Files "*">
Header Set Cache-Control "no-cache"
</Files>
</DirectoryMatch>
<DirectoryMatch "/client/help/">
ExpiresActive Off
</DirectoryMatch>

21

7. (Re)start the Apache process
8. Verify that all applications work as expected

Enable HTTPS between the web browser and Apache
Complete the following steps to enable HTTPS between the web browser and Apache.

Note:
OpenSSL is an open source tool and is not supported by Genesys. For more information about installing and using Open SSL,
see https://www.openssl.org/

To use OpenSSL to generate a CSR
1. Create a destination folder to make finding the CSR and private key easier and then open the command prompt.
2. Open terminal.
3. Go to the folder where you want to generate the CSR.
4. Type the following command: openssl req -out CSR.csr -new -newkey rsa:2048 -nodes -keyout

PrivateKey.key
5. Follow the prompts to provide the information about the end point for the CSR and then close the window. This process

generates two files: CSR.csr and PrivateKey.key
6. Send the CSR file to the third-party CA to be signed. Do not send the private key. The third-party CA will provide a signed

certificate and a CA certificate.

1. Copy the signed certificate(s) you received from the CA to your web server.
2. Locate the Apache server’s configuration file (for example, /conf/httpd.conf).
3. Add the certificate information to the Virtual Hosts section for port 443.

 #IP Address of your server and port for HTTPS.
<VirtualHost 192.168.0.1:443>
DocumentRoot /var/www/website
ServerName www.domain.com
SSLEngine on
#The main certificate for your server.
SSLCertificateFile /etc/ssl/crt/primary.crt
#The private key you generated when creating a certificate signing request.
SSLCertificateKeyFile /etc/ssl/crt/private.key
#The intermediate certificate your CA sent, if any.
SSLCertificateChainFile /etc/ssl/crt/intermediate.crt

4. Edit the three locations to match the filename and location of your certificates and then save your changes.
5. Restart Apache.
6. Complete the steps to Enable HTTPS between Apache and CIC.

Step 1: Generate certificate signing request

Step 2: Add the signed certificate to the server

22

https://www.openssl.org/

Enable HTTPS between Apache and CIC

Tip:
Best practice is to use HTTPS from CIC to Apache and from Apache to the web browser, or from Apache to the web browser
only. Securing traffic from Apache to CIC only can cause issues with Secure cookies.

Ensure that you completed the steps to Enable HTTPS between the web browser and Apache first.

To enable HTTPS between the CIC server and the web server when using Apache
1. Import the CIC HTTPS certificate to the web server as a trusted root certificate authority.

Note:
Consult the documentation for your server operating system because instructions for adding a trusted root certificate
authority vary by operating system.

2. Verify that your web server’s configuration file includes a rewrite rule for HTTPS traffic over port 8019:
Apache

SSLProxyEngine on
RewriteRule "^(/.*)/api/([^/]+)(/.*)" "https://$2:8019$3"

[P,E=WEB_APP:$1,E=ICWS_HOST:$2,E=ICWS_PATH:$3,E=HTTP_HOST:%{HTTP_HOST},E=REQUEST_URI:%
{REQUEST_URI},E=SCHEME:%{REQUEST_SCHEME}]

Nginx

proxy_passhttps://$server:8019$icws_pathis_argsargs;

23

Install CIC Web Applications on Nginx
To install CIC Web Applications on Nginx
1. Create a folder in the document root of your web server for the CIC Web Applications. Verify that your web server software (IIS, Apache, or Nginx) has the appropriate

permissions for that newly created folder.

Note:
In this example, the folder is ININApps.

2. Download the CIC Web Applications zip file fromhttps://my.inin.com/products/Pages/Downloads.aspx. All of the web applications are contained in this single zip.
3. Unzip the CIC Web Applications folder.
4. Navigate to the web_files folder inside the unzipped CIC Web Applications folder.
5. Copy all of the folders inside of web_files. Each folder contains one CIC web application.
6. Paste the folders copied in the previous step into the directory you created in step 1. Doing so places the appropriate directory structure and files for all CIC Web

Applications on your web server.
7. In Nginx /conf/nginx.conf, verify the following (minimally required) configuration entries are set or added (whether at the http or server level):

include mime.types;
default_type application/octet-stream;
sendfile on;
keepalive_timeout 65;
gzip on;
gzip_types text/plain
//eic/2019r2_systest/products/documentation/source/Technical_Reference_HTML/cic_web_applications_icg/Install_CIC_Web_Applications_on_Nginx.htm#2

 text/css application/javascript application/json image/svg+xml;
index index.html
//eic/2019r2_systest/products/documentation/source/Technical_Reference_HTML/cic_web_applications_icg/Install_CIC_Web_Applications_on_Nginx.htm#2

 index.htm;
client_max_body_size 0;
autoindex on;
autoindex on;

8. Set the root entry for the server to the CIC Web Applications folder
9. Add the following rewrite rules within the server object:

set $ininIcwsOriginalUrl $http_inin_icws_original_url;
if ($ininIcwsOriginalUrl !~ .+) {
set $ininIcwsOriginalUrl $scheme://$http_host$request_uri;
}
location ~* (?:^(.+)/api|^/api)/([^/]+)(/.+)$ {
set $web_app
//eic/2019r2_systest/products/documentation/source/Technical_Reference_HTML/cic_web_applications_icg/Install_CIC_Web_Applications_on_Nginx.htm#2

 $1;
set $server
//eic/2019r2_systest/products/documentation/source/Technical_Reference_HTML/cic_web_applications_icg/Install_CIC_Web_Applications_on_Nginx.htm#2

 $2;
set $icws_path
//eic/2019r2_systest/products/documentation/source/Technical_Reference_HTML/cic_web_applications_icg/Install_CIC_Web_Applications_on_Nginx.htm#2

 $3;
proxy_cookie_path /icws/ $web_app/api/$server/icws/;
proxy_redirect /icws/
//eic/2019r2_systest/products/documentation/source/Technical_Reference_HTML/cic_web_applications_icg/Install_CIC_Web_Applications_on_Nginx.htm#2

 $web_app/api/$server/icws/;
proxy_set_header X-Forwarded-For
//eic/2019r2_systest/products/documentation/source/Technical_Reference_HTML/cic_web_applications_icg/Install_CIC_Web_Applications_on_Nginx.htm#2

 $proxy_add_x_forwarded_for;
proxy_set_header ININ-ICWS-Original-URL
//eic/2019r2_systest/products/documentation/source/Technical_Reference_HTML/cic_web_applications_icg/Install_CIC_Web_Applications_on_Nginx.htm#2

 $ininIcwsOriginalUrl;
proxy_pass http://$server:8018$icws_pathis_argsargs;
 add_header
//eic/2019r2_systest/products/documentation/source/Technical_Reference_HTML/cic_web_applications_icg/Install_CIC_Web_Applications_on_Nginx.htm#2

 P3P ‘CP=“CAO PSA OUR”‘;
 # If you are securing the ICWS host(s), use this rewrite
//eic/2019r2_systest/products/documentation/source/Technical_Reference_HTML/cic_web_applications_icg/Install_CIC_Web_Applications_on_Nginx.htm#2

 rule instead:
 # proxy_passhttps://$server:8019$icws_pathis_argsargs;
 proxy_buffering off;
 proxy_http_version 1.1;
}

Note:
If the X-Forwarded-For header is already being set to $proxy_add_x_forwarded_for at a higher level, it is not needed here. That header is, however, required for these
API calls.

24

https://my.inin.com/products/Pages/Downloads.aspx

Note:
All proxy_set_header directives must be placed at the same level within the configuration file, i.e. in the code above, the proxy_set_header directives both must either
be inside of the location block or outside of the location block.

10. Add the following cache rules within the server object:

location ~ /client/ {
 location ~ /client/help/ {
 expires off;
 }
 location ~ /client/(?:addins|config)/ {
 add_header Cache-Control "no-cache";
 }
 location ~ index.html?$ {
 expires 15m;
 }
 location ~ .(?:js|css|jpe?g|ico|png|gif|svg|ttf|woff|otf|eot|mp3|wav|ogg)$
//eic/2019r2_systest/products/documentation/source/Technical_Reference_HTML/cic_web_applications_icg/Install_CIC_Web_Applications_on_Nginx.htm#2

 {
 expires 1y;
 }
}

11. (Re)start the Nginx process
12. Verify that all applications work as expected.

Enable HTTPS between the web browser and Nginx
Complete the following steps to enable HTTPS between the web browser and Nginx.

Note:
OpenSSL is an open source tool and is not supported by Genesys. For more information about installing and using Open SSL, see https://www.openssl.org/

To use OpenSSL to generate a CSR
1. Create a destination folder to make finding the CSR and private key easier. Open the command prompt.
2. Open terminal.
3. Use cd to navigate to the folder where you want to generate the CSR.
4. Type the following command: openssl req -out CSR.csr -new -newkey rsa:2048 -nodes -keyout PrivateKey.key
5. Follow the prompts to enter the information about the end point for the CSR and then close the window. This process generates two files: CSR.csr and

PrivateKey.key
6. Send the CSR file to the third-party CA to be signed. Do not send the private key. The third-party CA will provide a signed certificate and a CA certificate.

To add the signed certificate to the server
1. Copy the signed certificate(s) you received from the CA to your web server.
2. To use multiple certificates, Nginx requires that all certificates be in one file. To combine the certificates:

 cat your_domain_name.crt ExampleCA.crt >> bundle.crt

3. Open the virtual hosts file and add the following information:

 server {
listen443;
sslon;
ssl_certificate/etc/ssl/your_domain_name.pem;
 (or bundle.crt)
ssl_certificate_key/etc/ssl/your_domain_name.key;
server_name your.domain.com;
access_log /var/log/nginx/nginx.vhost.access.log;
error_log /var/log/nginx/nginx.vhost.error.log;
location / {
root/home/www/public_html/your.domain.com/public/;
indexindex.html;
}
}

4. Edit the certificate locations to match the filename and location of your certificates and then save the file.
5. Restart Nginx.
6. Complete the steps to Enable HTTPS between Nginx and CIC.

Step 1: Generate certificate signing request

Step 2: Add the signed certificate to the server

25

https://www.openssl.org/

Enable HTTPS between Nginx and CIC

Tip:
Best practice is to use HTTPS from CIC to Nginx and from Nginx to the web browser, or from NGIX to the web browser only. Securing traffic from Nginx to CIC only can
cause issues with Secure cookies.

Ensure that you completed the steps to Enable HTTPS between the web browser and Nginx first.

To enable HTTPS between the CIC server and the web server when using Nginx
1. Import the CIC HTTPS certificate to the web server as a trusted root certificate authority.

Note:
Consult the documentation for your server operating system because instructions for adding a trusted root certificate authority vary by operating system.

2. Verify that your web server’s configuration file includes a rewrite rule for HTTPS traffic over port 8019:
Nginx

proxy_passhttps://$server:8019$icws_pathis_argsargs;

26

Application Configuration

servers.json
To restrict the CIC servers users can choose, add a file called servers.json under the config directory in the client folder
under the CIC Web Applications folder. If users are logging into one server, the configuration is as follows:

{
"version": 1,
"servers": [
{ "host": "salesic",
 "displayName": "Sales" }
]
}

If users can choose from a predefined list of CIC servers:

{
"version": 1,
"servers": [
{ "host": "salesic",
 "displayName": "Sales", "order": 0

 },
{ "host": "supportic",
 "displayName": "Support", "order":

 1 }
]
}

Note:
The host is the CIC server, not the OSSM. The old key hostName is deprecated but still supported.

This file requires strict JSON. Hanging commas or single quotes will cause errors.

If no servers are specified, (e.g., servers: []), then the server selection page during log on will have a text field to enter the CIC server
to connect to. If a single server is specified, the server selection page will be skipped. If two or more servers are specified, then the
server selection page will have a list box to select a server.

altHostHints
In 2015 R4 and following, servers.json supports listing alternate hosts for a given server entry, which is helpful in switchover
scenarios when the primary server is not reachable or the switchover pair is in a DNS round-robin. The new altHostHints property
lists alternate servers the application can use.

{
"version": 1,
"servers": [
{ "host": "notReachableSalesIc",
 "displayName": "Sales",
"altHostHints": ["salesic1", "salesic2"

] }
]
}

In a CIC environment with OSSMs, it is advantageous to put the all of the OSSMs in the altHostHints array.

With a round-robin switchover pair, do not place the short host name in host (e.g. server1). Instead use fully qualified domain
names in both host and altHostsHints. List the primary server in hosts and the backup servers in altHostHints.

27

For example, here is a configuration for server1 (without OSSMs):

{
"version": 1,
"servers": [
{ "host": "server1.example.com",
 "displayName": "Indianapolis", "altHostHints":

 ["server2.example.com"] }
]
}

The host property should not be changed because settings will depend on it in 2015 R4.

Once we successfully connect with the client, the alternate hosts are cached from what the server gives us.

28

Application updates (subsequent installs)
New versions of the CIC Web Applications are located at https://my.inin.com/products/Pages/Downloads.aspx. Download and
unzip the new version of the applications before completing the instructions that follow.

Back up existing applications
Back up Genesys web application files before performing updates. Backing up the files allows you to roll back the installation if
necessary.

All CIC Web Applications should exist in a single directory, which should be zipped and backed up. Genesys recommends adding the
date and release number to the zip file's name.

Upgrade Interaction Connect
As of 2016 R1, Interaction Connect supports add-ins. When upgrading Interaction Connect, back up the add-ins and config
directories before upgrading Interaction Connect.

In the following instructions, [client] is the Interaction Connect root directory on your web server. For example, if Interaction
Connect is in a directory named client, back up client/addins and client/config.

To upgrade Interaction Connect
1. Back up the [client]/addins and the [client]/config directories.
2. Download and unzip the new version of Interaction Connect. See steps 2-4 in "All server types: download, unzip, and copy

application files" for detailed instructions.
3. In the unzipped folder, navigate to web_files/client and copy the contents inside of the client directory.

Note:
If you copy the entire client directory, instead of the contents of the client directory, you will need to add the backed up
[client]/addins and [client]/config directories back to the [client] directory after upgrading.

4. Move the copied files for the new version of Interaction Connect into the [client] directory for the CIC Web Applications on
your web server, replacing files when they collide.

5. Verify that [client]/addins and [client]/config have the appropriate files.

Copy files to the web server
Copy only the application directories, leaving in place other files such as configuration files. In the following examples, source is a
directory that solely contains the unzipped application directories.

Windows

ROBOCOPY \path\to\source \path\to\webserver\root /e

*nix

rsync -a /path/to/source/ /path/to/webserver/root/

Rollbacks
To rollback an update, use the zip file you created as a backup to replace the files currently in place.

29

https://my.inin.com/products/Pages/Downloads.aspx

Load balancing multiple web servers
CIC Web Applications consist of static files, with no server-side session state. Therefore, affinity is not needed for web server
requests. All requests for a single session do need affinity with an CIC server (or OSSM), but the URL rewrite rules take care of that
for you.

For information about load balancing multiple web servers, see the following resources:

IIS: http://technet.microsoft.com/en-us/library/jj129390.aspx

Apache: http://httpd.apache.org/docs/2.2/mod/mod_proxy_balancer.html

Nginx: http://nginx.org/en/docs/http/load_balancing.html

30

http://technet.microsoft.com/en-us/library/jj129390.aspx
http://httpd.apache.org/docs/2.2/mod/mod_proxy_balancer.html
http://nginx.org/en/docs/http/load_balancing.html

Troubleshooting

On IIS, the CIC Web Application's main.js takes a long time to load when
compression is enabled
Solution

The Chrome Network tab is useful for determining which request is taking the longest. Turn on the Disable caching option in
the Chrome Network tab.
Ensure that output caching is enabled on IIS and is working properly. Perfmon contains several counters in the Web Service
Cache category that monitor the state of the cache, including the size, number of files/URIs cached, and the hit rate.
Check for I/O performance issues

On IIS, a slow request becomes faster after reloading the resource multiple times
Solution

Tweak the frequentHitThreshold and frequentHitTimePeriod parameters to ensure that IIS is retaining the cached responses.

31

Appendix A: IIS XML Configuration
To configure IIS XML
1. Add the following location entry in ApplicationHost.config at

%WINDIR%\system32\inetsrv\config\applicationHost.config
Put this location entry above or below the other location entry already present in order to avoid breaking
applicationHost.config
The location path needs to match the IIS Site name.

<location path="ININApps">
<system.webServer>
<rewrite>
<allowedServerVariables>
<add
 name="WEB_APP" />
<add
 name="ICWS_HOST" />
<add
 name="HTTP_ININ-ICWS-Original-URL" />
</allowedServerVariables>
</rewrite>
</system.webServer>
</location>

2. If there is not a web.config file, create a web.config file with the following content in the CIC Web Applications folder
on your web server:

<configuration>
<system.webServer>
<rewrite>
<rules>
<rule
 name="inin-api-rewrite" enabled="true" stopProcessing="true">
<match
 url="(?:^(.*/)api|^api)/([^/]+)(/.*)" />
<serverVariables>
<set
 name="WEB_APP" value="{R:1}" />
<set
 name="ICWS_HOST" value="{R:2}" />
<set
 name="HTTP_ININ-ICWS-Original-URL" value="{MapScheme:{HTTPS}}://{HTTP_HOST}{UNENCODED_URL}"

 replace="false" />
</serverVariables>
<action
 type="Rewrite" url="http://{ICWS_HOST}:8018{R:3}"

 logRewrittenUrl="true" />
<!--
If
 you are securing the ICWS host(s) with https, use the following rewrite

 rule instead
<action
 type="Rewrite" url="https://{ICWS_HOST}:8019{R:3}"

 logRewrittenUrl="true" />
-->
</rule>
</rules>
<outboundRules>
<rule
 name="inin-cookie-paths">

32

<match
 serverVariable="RESPONSE_Set_Cookie" pattern="(.*)Path=(/icws.*)"

 />
<action
 type="Rewrite" value="{R:1}Path=/{WEB_APP}api/{ICWS_HOST}{R:2}"

 />
</rule>
<rule
 name="inin-location-paths">
<match
 serverVariable="RESPONSE_Location" pattern="^/icws/.*"

 />
<action
 type="Rewrite" value="/{WEB_APP}api/{ICWS_HOST}{R:0}"

 />
</rule>
</outboundRules>
<rewriteMaps>
<rewriteMap
 name="MapScheme">
<add
 key="on" value="https" />
<add
 key="off" value="http" />
</rewriteMap>
</rewriteMaps>
</rewrite>
<security>
<requestFiltering
 allowHighBitCharacters="true" />
</security>
<httpCompression>
<staticTypes>
<add
 mimeType="application/x-javascript" enabled="true"

 />
</staticTypes>
</httpCompression>
</system.webServer>
<location path="client/lib">
<system.webServer>
<staticContent>
<clientCache
 cacheControlMode="UseMaxAge" cacheControlMaxAge="365.00:00:00"

 />
</staticContent>
</system.webServer>
</location>
<location path="client/nls">
<system.webServer>
<staticContent>
<clientCache
 cacheControlMode="UseMaxAge" cacheControlMaxAge="365.00:00:00"

 />
</staticContent>
</system.webServer>

33

</location>
<location path="client/addins">
<system.webServer>
<staticContent>
<clientCache
 cacheControlMode="DisableCache" />
</staticContent>
</system.webServer>
</location>
<location path="client/config">
<system.webServer>
<staticContent>
<clientCache
 cacheControlMode="DisableCache" />
</staticContent>
</system.webServer>
</location>
<location path="client/index.html">
<system.webServer>
<staticContent>
<clientCache
 cacheControlMode="UseMaxAge" cacheControlMaxAge="0.00:15:00"

 />
</staticContent>
</system.webServer>
</location>
</configuration>

34

Change Log
The following table lists the changes to the CIC Web Applications Installation and Configuration Guide since its initial release.

Date Change

01-October-2014 Initial Release

01-August-2015 Added alternate hosts information for 2015 R4, updated cover page and copyright info
Added recommended cache settings for Interaction Connect
Added IIS Manager configuration steps and placed IIS XML configuration in Appendix A
Fixed reference to incorrect server variable name

01-September-2015 Added information about updating Interaction Connect.

01-November-2015 Added "Configure HTTPS for IIS"
Added "Configure HTTPS for Apache"
Added "Configure HTTPS for Nginx"

01-December-2015 Added instructions for disabling response buffering in IIS install instructions.

01-May-2016 Reorganized installation instructions to clarify required and optional tasks.

01-August-2016 Added "Desktop alerts do not appear in Interaction Connect" section in Troubleshooting chapter. (Removed
section in 2018; alerts supported in 2018 R3 and later.)

01-November-2016 In "Step 1: Change Inbound rule to use HTTPS", fixed typographical error in step 6.

01-February-2017 Added Tip about best practice to Enable HTTPS between IIS and CIC, Enable HTTPS between Apache
and CIC, and Enable HTTP between Nginx and CIC.
In the Step 3: Configure IIS section, added to step 4 of procedure, iii. Update Maximum allowed content
length (bytes) to something greater than or equal to "20971520".
In "Install CIC Web Applications on Apache" section, inserted a new step:

4. If LimitRequestBody is set to something other than 0, ensure that you increase it to
something greater than or equal to 20971520 (bytes).

Then renumbered rest of procedure.

01-June-2017 Added .woff2 -> application/font-woff2 to MIME types in step 10 of "Configure IIS" procedure.

01-July-2017 Rebranded this document to apply Genesys corporate lexicon.

01-August-2017 Updated cover, copyrights and trademarks pages.

25-September-2018
Added to Prerequisites: If you use the same reverse proxy for CIC Web Applications and Genesys Intelligent
Automation, then the Intelligent Automation rewrite rule must come before the CIC Web Application rule. For
more information, see the PureConnect Integration with Genesys Intelligent Automation Technical Reference.

22-October 2018
Updated servers.json. Corrected location of servers.json file to read: To restrict the CIC servers users can
choose, add a file called servers.json under the config directory in the client folder under the CIC Web
Applications folder.

20-February-2019
Removed all references to appsettings.json; added note indicating that you must use the latest version of the
CIC Web Applications.

22-February-2019
Updated web server software requirements.

28-February-2019
Corrected URLs for downloading the Application Request Routing extension and the URL Rewrite extension.

20-June-2019
Fixed incorrect symbol in code sample in step 9 of the Install CIC Web Applications on Nginx topic.

35

	Table of Contents
	About the CIC Web Applications Installation and Configuration Guide
	Web server requirements
	Transport Layer Security
	Parent directories
	Prerequisites
	Installation Overview for IIS, Apache, and Nginx
	Install CIC Web Applications on Microsoft IIS
	Step 1: Add Required IIS Services
	Step 2: Download and Copy CIC Web Applications Files
	Step 3: Configure IIS
	Enable HTTPS between the web browser and IIS
	Step 1: Add a Certificate to the Web Server
	Create a self-signed certificate
	Use a third-party certificate

	Step 2: Bind the Certificate to the HTTPS port
	Step 3: Enable SSL on the Site

	Enable HTTPS between IIS and CIC
	Step 1: Change inbound rule to use HTTPS
	Step 2: Trust the CIC server HTTPS certificate

	Install CIC Web Applications on Apache
	Enable HTTPS between the web browser and Apache
	Step 1: Generate certificate signing request
	Step 2: Add the signed certificate to the server

	Enable HTTPS between Apache and CIC

	Install CIC Web Applications on Nginx
	Enable HTTPS between the web browser and Nginx
	Step 1: Generate certificate signing request
	Step 2: Add the signed certificate to the server

	Enable HTTPS between Nginx and CIC

	Application Configuration
	servers.json
	altHostHints

	Application updates (subsequent installs)
	Back up existing applications
	Upgrade Interaction Connect
	Copy files to the web server
	Rollbacks

	Load balancing multiple web servers
	Troubleshooting
	On IIS, the CIC Web Application's main.js takes a long time to load when compression is enabled
	On IIS, a slow request becomes faster after reloading the resource multiple times

	Appendix A: IIS XML Configuration
	Change Log

