
PureConnect®

2019 R3

Generated:

11-September-2019

Content last updated:

11-June-2019

See Change Log for summary of
changes.

CIC Database Configuration
and Maintenance for SQL

Server

Technical Reference

Abstract

This document describes the procedures for setting up a database
server for optimum performance with CIC, with specific guidance for
SQL Servers.

For the latest version of this document, see the PureConnect
Documentation Library at: http://help.genesys.com/cic.

For copyright and trademark information, see
https://help.genesys.com/cic/desktop/copyright_and_trademark_information.htm.

1

http://help.genesys.com/cic
https://help.genesys.com/cic/desktop/copyright_and_trademark_information.htm

2
3
4
4
4
5
5
6
6
6
6
6
7
7
7
7
7
7
8
8
9
9
9
9
9
9
9

10
11
11
11
13
14
15

Table of Contents
Table of Contents
Introduction to Database Configuration and Maintenace for SQL Server
CIC Database Configuration Technical Summary

I/O configuration
Database size
Database options configuration
Database maintenance

Hardware
CPU
Memory

AWE
Drives
I/O and RAID
I/O controller
OLTP vs. OLAP
I/O resting
Networking

Network protocols
Routers
Network cards

Software
Service packs
Services
File structure and distribution

MDF
LDF
Multiple file Strategy
Tempdb

SQL Server Database Settings
AutoGrowth
ODBC

Database Maintenance Plans
Third-party (Application) Access to Database
Change Log

2

Introduction to Database Configuration and Maintenace for
SQL Server
A database is a collection of data that is organized so that its contents can easily be accessed, managed, and updated. A small
database might contain tables of names, addresses and phone numbers. To serve that collection of information, a small database
engine would suffice. However, a corporation typically stores a much larger quantity of information. A database can have millions
of rows and columns of data, stored in multiple tables linked into a massive storage unit. In that situation, not only must your
database engine must be powerful, but a myriad of other issues that can enhance or mire the performance of the database engine
should be considered.

The CIC Database Configuration and Maintenance for SQL Server Technical Reference describes the procedures for setting up a
database server for optimum performance with CIC, with specific guidance for Oracle. Many of the ideas here are focused on a
best-case scenario, designed to tune both the hardware and software to operate at peak efficiency.

Much of the information contained within comes from two sources:
1. Website: www.sql-server-performance.com
2. The Microsoft MSDN Library.

For more information, see the Microsoft SQL Server 2008 R2 Best Practices Analyzer tool. It analyzes a database's current
configuration, indicate potential problems, and recommend solutions to those problems.

For SQL Server versions supported for CIC 2015 R1 or later, see Testlab http://testlab.genesys.com/.

3

http://www.sql-server-performance.com
http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=15289
http://testlab.genesys.com/

CIC Database Configuration Technical Summary

I/O configuration
The configuration of the I/O system is extremely important for the performance of the database. CIC can generate thousands of
records per second, and all of those records must be written to the database as quickly as possible. A poorly configured I/O system
can cause a queuing problem, meaning that the database is not able to keep up with all the records CIC generates.

Some recommended web sites are listed below. (Several sites state that they are for SQL Server 2005, but many of the
recommendations are valid for SQL Server 2008 R2.)

Physical Database Storage Design
SQL Server I/O Best Practices
Formatting drives for maximum SQL Server performance

Basic principles when considering the drives to use include:
1. When using traditional hard drives, get the highest RPM available, which is 15,000 RPM.
2. Do not get the largest drives available. It is much better to have many multiple smaller drives than a few large drives. Having a

larger number of drives allows the I/O to be spread out over more devices. Drives smaller than 100 GB are ideal, though they
may be hard to find. Stay away from drives that are 500 GB and larger.

3. If the storage system is a Storage Area Network (SAN), it is vital to work with the SAN administrators to set up the SAN for
database performance. There are many articles available on the web that describe best practices. Here are some very useful
websites that discuss using a SAN with SQL Server:

SAN Storage Best Practices for SQL Server
SAN Multipathing Part 1: What are Paths?
SAN Multipathing Part 2: What Multipathing Does

4. Solid State Drives (SDD) can achieve remarkable I/O rates, though they are very expensive.

Configure the server with a minimum of four (4) physically separate data storage arrays, and allocate them as follows:
1. Array1 - Operating system.

Use RAID 1 or RAID 10.
2. Array2 - SQL (user) database data files.

Use RAID 10.
3. Array3 - SQL (user) database transaction log files.

Use RAID 1 or RAID 10.
4. Array4 - SQL tempdb data file and transaction log file.

Use RAID 0, RAID 1, or RAID 10.

RAID 5 is not recommended, because of the high amount of writes that CIC generates. For databases that have extremely high
volume and through put, consider placing indexes and tables onto separate arrays. In addition, potentially large tables such as the
tracker tables IntxSegment and Intx_Participant may benefit from having their own filegroups.

Database size
1. Configure the tempdb data file between 500 and 1000mb. If Interaction Tracker and/or Interaction Recorder are used, add

additional 500 to 800mb for each of them. The two links below have good recommendations for setting up temp DB. Generally,
SQL Server should have one tempdb file for each cpu core, e.g. a machine with two dual core CPUs would have four tempdb
files. It is important that each file is sized the same and the files are preallocated, so that tempdb does not have to expand
frequently. For machines with many cores, a maximum of eight tempdb files may be enough. Monitoring will help to determine
if tempdb is functioning optimally.
a. Optimizing tempdb Performance
b. Properly Sizing the SQL Server TempDB Database

2. Configure the tempdb transaction log file between 300 and 500mb. If you have Interaction Tracker and/or Interaction Recorder
licenses as well, add additional 250 to 500mb for each of them.

3. Use the database space planning spreadsheet, IC_DB_SpacePLanning.xls (available in the CIC .iso file and in the
PureConnect Documentation Library) to calculate, and then configure, the size of the CIC database. The computation should
include the number of years of data planned to be kept in the database. Allow sufficient and constant free space in both the
database and transaction log for rebuilding indexes. (For a 2300mb database, 1000 to 1400mb of free space in both the
database and transaction log are needed to rebuild indexes that are 50% fragmented.)

4

http://technet.microsoft.com/en-us/library/cc966414.aspx
http://technet.microsoft.com/en-us/library/cc966412.aspx
http://www.mssqltips.com/tip.asp?tip=2138
http://www.brentozar.com/sql/sql-server-san-best-practices/
http://www.brentozar.com/archive/2009/05/san-multipathing-part-1-what-are-paths/
http://www.brentozar.com/archive/2009/05/san-multipathing-part-2-what-multipathing-does/
http://msdn.microsoft.com/en-us/library/ms175527.aspx
http://www.mssqltips.com/tip.asp?tip=1388

4. Allow both the database and transaction logs to grow automatically (as a safeguard), but use a suitably sized growth
increment.

Database options configuration
Leave the defaults in place, except for 'optimize for ad hoc workloads'.

sp_configure 'show advanced options',1;
reconfigure;
go
sp_configure 'optimize for ad hoc workloads',1;
reconfigure;
go

Database maintenance
Perform database integrity checks and/or index reorganization in a scheduled job that is separate from the daily backup
maintenance plan. Regular index reorganization is vital for peak system performance. Use sys.dm_db_index_physical_stats
to identify which indexes need to be rebuilt or reorganized. We do not recommend setting up a regular job to rebuild all indexes; only
those indexes that have reached a pre-determined threshold of both size and fragmentation should be rebuilt or reorganized. See
Microsoft's online documentation about rebuilding indexes.

5

http://msdn.microsoft.com/en-us/library/ms189858.aspx

Hardware

CPU
When selecting a CPU for the server, select one with a large L2 cache. This is especially important for multiple-processor servers.
Select at least a 1MB L2 cache for one or two CPUs. Four or more CPUs should have at a least 2MB L2 cache in each CPU. The
greater the L2 cache, the greater the server's CPU performance because it reduces the amount of wait time experienced by the CPU
when reading and writing data to main memory.

Simple, single table queries and updates, along with query joins on small tables take minimal CPU processing power. On the other
hand, large joins, aggregations, and sorting of large result sets use a high level of CPU processing power. Keep this in mind when
choosing the hardware configuration for SQL Server.

Memory
In most cases, the more physical RAM SQL Server has the greater SQL Server's performance. If possible, purchase enough RAM to
hold the largest database table in memory. If such a purchase is not possible during the initial setup, leave room for adding more
RAM at a later date. We strongly recommend running the 64-bit version of SQL Server with a minimum of 4 GB RAM. Systems with
high performance demands should be prepared to use up to 128 GB RAM or more.

To take advantage of SQL Server's ability to run parallel queries, plan on investing on more RAM. Parallel queries use much more
RAM than non-parallel queries.

If SQL Server is running on a 32-bit Windows box, consider using Address Windowing Extensions (AWE) to increase the amount of
memory available to SQL Server. Normally, 32-bit CPUs can only support up to 4GB of RAM because of limited address space. SQL
Server supports AWE to bypass this limitation.

Note:
AWE will be removed in the next version of SQL Server. SQL Server 2008 R2 is the last version that will support AWE. We
strongly recommend using the 64-bit version instead of the 32-bit version of SQL Server.

AWE support is not turned on automatically. To enable AWE support change the "awe enabled" advanced option from 0 to 1. See
Enabling AWE Memory for SQL Server. To turn on AWE support:

 SP_CONFIGURE 'show advanced options', 1;
 --you must turn on advanced
 RECONFIGURE WITH OVERRIDE; --options

 first
 GO
 SP_CONFIGURE 'awe enabled', 1;
 RECONFIGURE WITH OVERRIDE;
 GO

Once AWE support has been turned on, SQL Server's dynamic memory is turned off. This means that when AWE support is turned
on, the entire RAM in the server, with the exception of about 128MB, will be dedicated to use by SQL Server. For most dedicated SQL
Servers, 128MB may be enough for the operating system to successfully run. But if you are running additional software on your
server, you may have to tell SQL Server to claim all less RAM. To do this, you can use SQL Server's "max server memory"
configuration option. For example:

SP_CONFIGURE 'max server memory', 4096;
RECONFIGURE WITH OVERRIDE;
GO

In the above example, we are telling SQL Server to only use 4GB of RAM, leaving any other RAM available in the server free for other
applications.

Drives

AWE

6

http://msdn.microsoft.com/en-us/library/ms190673.aspx

Avoid locating read-intensive and write-intensive activity on the same drive or array. For example, do not locate an OLTP and an
OLAP database or heavily random and sequential activity on the same physical device. Whenever a drive or array has to change
back and forth between activities, efficiency is lost.

NTFS-formatted partitions should not exceed 80% of their capacity. For example, a 20GB drive should never hold more than 16GB.
NTFS needs room to work, and when capacity exceed 80%, NTFS become less efficient and I/O suffers. Consider creating a system
alert to indicate when an array exceeds 80% of capacity so that immediate action can be taken to correct the problem.

I/O and RAID
Use hardware-based RAID rather than software-based RAID because the latter can't offload the work to a separate processor,
making it much slower than a hardware-based RAID solution.

Do not store the operating system, application software, or databases on single disk drives because they do not afford any fault
tolerance. Instead, always choose a RAID array made up of three or more physical drives that offers fault tolerance. Common fault
tolerant RAID configurations include RAID Level 1 (mirroring or duplexing) and RAID Level 10 (also called 1+0, which includes both
striping without parity and mirroring). Non fault tolerant RAID configurations include RAID 0 which is simple disk striping. RAID 0
offers excellent performance, and can be used for the TEMP tablespace. Each of these RAID levels offers different performance
levels. Ideally, if the budget allows, chose RAID Level 10, which offers both high-speed and fault tolerance.

I/O controller
Select the best I/O controller possible. Top-notch controllers offload much of the I/O work onto its own local CPU, freeing up CPU
time on the server to do other tasks. For the ultimate in I/O controllers, consider a fiber channel connection instead of a SCSI
connection. The controller should have the largest amount of cache RAM possible, with a minimum of 128mb of cache RAM.
Generally, the greater the RAM cache on the controller, the higher the performance of the overall I/O, because data can be read
ahead and stored in the cache, even if the data is not currently requested by Oracle. The data Oracle wants next from the array will
likely be in the cache, speeding up data access.

Do not put DAT, DLT, CD-ROM, scanners, or other non-hard disk devices on the same I/O controllers that connect to the hard disk
arrays. In addition, do not put hard disks on the same I/O controller if they have different speeds. Putting devices with different
speeds on the same I/O controller slows the faster devices. Always put slower devices on their own I/O controller.

For maximum I/O throughput, assign each type of major I/O activity (database, log files, tempdb, etc.) to its own separate RAID
controller and dedicated RAID array.

OLTP vs. OLAP
If the budget does not allow for the ideal number of disk controllers and hard disks to maximize the server's I/O performance,
remember that optimal OLTP I/O is achieved by increasing disk reads and writes. The best way to do this is to add more hard disks
to the array(s) that hold the database files and/or transaction logs. Adding more disks helps OLTP-based applications more than
increasing the number or speed of disk controllers would, because OLTP-based applications tend to be limited by the number of
transfer operations (read/writes) rather than bandwidth.

However, for OLAP-based applications, adding more and faster disk controllers to the array is generally a better way to boost I/O
than increasing the number of disk drives, because OLAP applications tend to be more limited by bandwidth than by read/write
operations. Adding faster or more disk controllers increases the bandwidth and helps to remove any bottlenecks.

I/O resting
There are several utilities available to test I/O subsystem performance. We recommend SQLIO and this tutorial.

Networking
If SQL Server is not connected to a switch (as recommended for best performance), try the following suggestions for boosting
network performance.

Network protocols

7

http://www.microsoft.com/downloads/en/details.aspx?familyid=9a8b005b-84e4-4f24-8d65-cb53442d9e19&displaylang=en
http://www.brentozar.com/archive/2008/11/storage-performance-testing-with-sqlio/

For best performance, SQL Server should be running on a dedicated server. Limit the number of network protocols installed on the
server, because unnecessary network protocols increase overhead on the server and send out unnecessary network traffic. For the
best overall performance, only install TCP/IP on the server.

While not always possible (especially for WANs and Internet connections), try to avoid a router between SQL Server clients and SQL
Server. In particular, avoid routers between two or more SQL Servers that need to communicate with each other. Routers are often a
bottleneck for network traffic and can affect SQL Server client/server performance. If SQL Server must communicate over a router,
ensure that the router has been properly tuned for maximum performance.

SQL Server should have a minimum of one 100Mbs network card, and perhaps two. Two cards can be used to increase network
throughput and to offer redundancy. In addition, the network card(s) should be connected to full-duplex switched ports for best
performance.

Be sure that the network card(s) in the server are set to the same duplex level (half or full) and speed as the switched port they are
connected to (assuming they are connected to a switch and not a hub). If there is a mismatch, the server may still be able to
connect to the network, but network performance can be significantly impaired.

Do not rely on network cards or switches that are supposed to auto-sense duplex or speed settings, because they often do not work
correctly. Manually set the duplex and speed for the card from the operating system, and if necessary, manually make the same
changes to the switch.

Windows allows network cards to save energy by going to sleep when they are not used. If any network card on a production server
has a power management feature, ensure that the power savings feature are off. Otherwise, unexpected results, such as a network
card that fails to wake up, or intermittent performance problems, may occur.

Check to see if the network card has a power management feature by viewing the Properties sheet for the network card's driver.
View the Power Management tab on the Properties sheet, to verify the settings.

Routers

Network cards

8

Software
The network libraries chosen during SQL Server installation can affect the speed of communications between the server and its
clients. Of the three key network libraries, TCP/IP is the fastest and Multi-Protocol is the slowest. Due to the speed advantage, use
TCP/IP on both the servers and clients. Do not install unused network libraries on the server, because they will contribute
unnecessary overhead.

Service packs
We recommend staying current with database service packs and maintenance. In most cases, you will want to install the latest SQL
Server service packs.

Services
Do not install unnecessary SQL Server services, such as Microsoft Search, OLAP, or English Query, as they only add additional
overhead to your server.

If applications do not use the Microsoft Distributed Transaction Coordinator (MS DTC), turn this service off by setting it to manual
using the Services icon in the Control Panel. Leaving this service on adds unnecessary overhead to your server.

File structure and distribution
Place the database files (.mdf, .ndf) and transaction log files (.ldf) for all production databases on separate arrays to isolate
potentially conflicting reads and writes. This means that the server will have at least two physical RAID arrays, one to store the
database files, and a separate one to store the transaction log files. The operating system can be stored on a mirrored set of
drives. Use separate storage areas for tempdb and the operating system. Since tempdb is rebuilt each time SQL Server is started,
this storage does not have to be fault tolerant (i.e., you could use RAID 0).

The physical location for the master, msdb, and model databases is not as critical as user databases because they are not used
excessively in production environments.

For database files (.mdf), the best performance is gained by storing them on RAID 10 arrays. Each RAID array should have as many
physical disks in the array as the controller will support, with the fastest RPM available. This allows reads and writes to be
performed simultaneously on each physical drive in the array, significantly boosting disk I/O.

For database log files (.ldf), the best performance is often gained by storing them on a RAID 1 (mirrored or duplexed) array. This
assumes that there is only a single log file on the RAID 1 array. If there is only a single log file on the RAID 1 array, the file can be
written to sequentially, speeding up log writes. But if there are multiple log files (from multiple databases) sharing the same RAID 1
array, then there is little or no advantage of using a RAID 1 array. This is because although writing to a log is done sequentially,
multiple log files on the same array means that the array will no longer be able to write sequentially, but will have to write randomly,
negating much of the benefits of a RAID 1 array.

Note:
You can put each database log on its own separate RAID 1 array. Another option is to put the log on a RAID 10 array. While this
is expensive, it will provide optimum performance.

If your database is very large and very busy, multiple files can be used to increase performance. One example of using multiple files
would be a single table with 10 million rows that is heavily queried. If the table is in a single file, such as a single database file, then
SQL Server would only use one thread to perform a sequential read of the rows in the table. But if the table were divided into three
physical files (all part of the same filegroup), then SQL Server would use three threads (one per physical file) to sequentially read

MDF

LDF

Multiple file Strategy

9

the table, which potentially could be much faster. In addition, if each file were on its own separate disk or disk array, the
performance would even be greater.

Essentially, the more separate physical files that a large table is divided into, the greater the potential performance. Of course there
is a point where the additional threads aren't of much use when you max out the server's I/O. But up until you do max out the I/O,
additional threads (and files) should increase performance.

If SQL Server's tempdb database is heavily used by your application(s), then locate it on an array of its own (such as RAID 0, RAID 1
or RAID 10). If SQL Server has multi-gigabyte databases, create a new file for tempdb that is at least 1 GB in size. Having multiple
tembdb files can also improve performance, taking care to make sure that each file is the same size.

To move the tempdb database after SQL Server is installed, run this script to move it to a more appropriate location:

USE master
go
ALTER DATABASE tempdb MODIFY FILE (NAME = tempdev, FILENAME = 'E:\tempdb.mdf')
go
ALTER DATABASE tempdb MODIFY FILE (NAME = templog, FILENAME = 'E:\templog.ldf')
go

where NAME refers to the logical name of the tempdb database and log files, and FILENAME refers to the new location of the
tempdb files. Once this command has run, restart the mssqlserver service so the change can take effect. Increase the size of the
tempdb database in its new location (to 500mb, or larger) if necessary.

If tempdb database is heavily used and tempdb grows larger than its default size, permanently increase the default size of the
tempdb file(s) to a size closer to what is actually used on a day-to-day basis. This is because every time the SQL Server service
(mssqlserver) is restarted, the tempdb file is recreated to the default size. While the tempdb file can grow, it does take some
resources to perform this task. With the tempdb file sized correctly when SQL Server is restarted, the overhead of increasing the
file is eliminated.

Database integrity checks like DBCC CHECKDB or DBCC CHECKCATALOG will need to use space in tempdb during their operation.
Therefore it is essential that the tempdb be sized correctly to accommodate these commands. Use the WITH ESTIMATEONLY
clause on the DBCC command to determine how much tempdb space will be required. Execution of these commands can also
realize a significant performance improvement if tempdb is located on a disk array that is separate from both the database and
transaction log files.

Heavy activity in the tempdb database can drag down performance. This is especially true if large temp tables are created, and then
used in queries and joins. To help speed these queries, be sure the AUTOSTATS database option is turned on (in tempdb), and then
create one or more indexes on these temp tables that can be used by queries. A proper setup can substantially speed up application
performance.

Tempdb

10

SQL Server Database Settings

AutoGrowth
Every time a database file or transaction log grows automatically, it takes up a little extra CPU and I/O time. Minimize how often
automatic growth occurs by sizing the database and transaction logs as accurately as possible to their "final" size.

This recommendation is particularly important for transaction logs, because the more often that SQL Server has to increase the
size of a transaction log, the more transaction log virtual files that have to be created and maintained by SQL Server. A transaction
virtual file is used by SQL Server to internally divide and manage the physical transaction log file.

In SQL Server, database and log files can be set to grow automatically. The default growth amount is 10%. This automatic growth
number may or may not be ideal. If the database is growing automatically often (such as daily or several times a week), change the
growth percentage to a larger number, such as 20% or 30%. Each time the database has to be increased, SQL Server will suffer a
small performance hit. By increasing the amount the database grows each time, the less often it will have to grow.

If your database is very large, 10GB or larger, you may want to use a fixed growth amount instead of a percentage growth amount.
This is because a percentage growth amount can be large on a large database. For example, a 10% growth rate on a 10GB database
means that when the database grows, it will increase by 1GB. If the percentage growth is too large, change the settings to use a
fixed growth size.

Size the database properly, to ensure that the database is not subject to frequent growth. In addition, set the growth increment to a
reasonably sufficient value, to prevent the database from growing in numerous, small increments. In this configuration, the Auto
grow feature is used as a safeguard only to prevent the database from stopping if it unexpectedly runs out of space. The table
below shows typical growth increments for databases of the indicated size.

Database Size Growth Inc. Tran Log Size Growth Inc.

1gb 100 – 200mb 200 – 300mb 50 – 100mb

2gb 200 – 400mb 400 – 600mb 100 – 200mb

3gb 200 – 400mb 600 – 900mb 150 – 250mb

4gb 250 – 400mb 800 – 1000mb 200 – 300mb

5gb 250 – 500mb 1000 – 1500mb 250 – 350mb

6gb 300 – 500mb 1000 – 1700mb 300 – 400mb

7gb 350 – 600mb 1000 – 1850mb 300 – 400mb

8gb 400 – 650mb 1000 – 2000mb 300 – 450mb

9gb 400 – 700mb 1000 – 2400mb 300 – 500mb

10gb 500 – 1000mb 1000 – 2500mb 300 – 500mb

Additionally, the use of a file defragmentation tool is recommended. Be aware that these tools are very resource intensive, so you
should only run them when the server is not servicing production requests.

ODBC
Do not use ODBC connection pooling and temporary stored procedures at the same time, or SQL Server will experience a
performance hit. When a DSN is used to make a connection from your application to SQL Server, the MDAC driver, by default,
converts any dynamic Transact-SQL from the application to temporary stored procedures in SQL Server. The theory behind this is
that if the application resends the same Transact-SQL to SQL Server more than once, then it will save the SQL Server overhead of
additional parsing and compilation. The recommended configuration consists of turning the convert T-SQL to temporary stored
procedure feature off. This feature is configurable from the ODBC Database Wizard when creating or modifying a DSN.

Connection pooling is another option that can be configured using the ODBC Database Wizard when creating or modifying a DSN. It
is also on by default, and it pools database connections from the application, which allows connections to be reused, which in turn
reduces the overhead of making and breaking database connections. The recommended configuration consists of turning the
connection pooling feature on. Note that pooling improves performance more than temporary stored procedures.

11

The problem is that if both of these options are on, which is often the case in DSNs, SQL Server can take a performance hit. Here's
what can happen: When dynamic Transact-SQL is converted into a temporary stored procedure by the MDAC driver, the temporary
stored procedure is stored in the tempdb database. When connection pooling is not enabled, and the connection between the client
application and SQL Server is ended, any temporary stored procedures created during the connection are deleted. But, when
connection pooling is enabled, things work differently. When a database connection is ended by the client application, it is not
ended at SQL Server. SQL Server still thinks the connection is still open, even though the client application does not. This means
the temporary stored procedures created during the connection are not deleted. With a busy client application that often starts and
stops database connections, the tempdb database can fill up with temporary stored procedures, putting unnecessary overhead on
SQL Server.

12

Database Maintenance Plans
Create a Database Maintenance Plan to maintain databases. Database integrity options include Check database integrity and
Include indexes, which test the data and index page allocations in the databases for any errors. These tests are resource intensive
and impair the performance of the server during the tests. These tests should only be run during off hours.

The database maintenance plan screen also has an option called Perform these tests before backing up the database or transaction
log. This is not a good choice to make from a performance standpoint. If chosen, every time the Maintenance Plan is used to
perform a database or transaction log backup--without exception--the integrity tests are automatically run. If the databases are
large, and/or if frequent database or transaction log backups occur, running these tests this often can significantly degrade the
server's performance. The recommended configuration consists of creating separate scheduled SQL tasks (in SQL Agent) to
perform database/log backups and database integrity checks.

It is imperative to run backups, DBCC CHECKDB, and index rebuilds or reorgs regularly! It is equally imperative that indexes rebuilds
and reorgs are done selectively. All indexes should not be rebuilt or reorged during the same job!

13

Third-party (Application) Access to Database
Be wary of allowing users to directly access the databases (especially OLTP databases) with third-party database access tools,
such as Microsoft Excel or Access. Many of these tools can wreak havoc with database performance. Here are some reasons why:

Often these users aren't experienced with these tools, and create overly complex queries that eat up server resources. At the
other extreme, their queries may not be complex enough (such as lacking effective WHERE clauses) and return thousands, if
not millions, of unnecessary rows of data.
This reporting activity can often lock rows, pages, or tables, creating user contention for data and reducing database
performance.
These tools are often file-based. This means that even if an effective query is written, the query is not performed at the server.
Instead, the entire table (or multiple tables in the case of joins) must be returned to the client software where the query is
actually performed. This leads to excessive server activity, and can play havoc on your network.

If users must be allowed access to the data, limit hits on the production OLTP databases by pointing them to a "reporting" server
that is replicated or in the form of a datamart or data warehouse.

For tools to help performance tune the operating system, see Sysinternals. The site has tools to defrag the server's swap file,
among many others. And best of all, most are free.

14

http://www.sysinternals.com/

Change Log
The following table lists the changes to the CIC Database Configuration and Maintenance for SQL Server Technical Reference since
it was distributed for IC 4.0 GA.

Date Change

01-August-2014 Updated documentation to reflect changes required in the transition from version 4.0 SU# to CIC 2015 R1,
such as updates to product version numbers, system requirements, installation procedures, references to
Interactive Intelligence Product Information site URLs, and copyright and trademark information.

4-September-2015 Updated documentation to reflect rebranding in CIC 2016 R1.

17-January-2017 Updated Copyright and Trademark information for 2017

17-January-2017 Updated location for the database space planning spreadsheet, in the CIC Resource Center

03-April-2017 Removed obsolete content from "Networking" topic.

11-May-2018 Rebranded from Interactive Intelligence to Genesys

11-June-2019 Reorganized the content only, which included combining some topics and deleting others that just had an
introductory sentence such as, "In this section...".

15

	Table of Contents
	Introduction to Database Configuration and Maintenace for SQL Server
	CIC Database Configuration Technical Summary
	I/O configuration
	Database size
	Database options configuration
	Database maintenance

	Hardware
	CPU
	Memory
	AWE

	Drives
	I/O and RAID
	I/O controller
	OLTP vs. OLAP
	I/O resting
	Networking
	Network protocols
	Routers
	Network cards

	Software
	Service packs
	Services
	File structure and distribution
	MDF
	LDF
	Multiple file Strategy
	Tempdb

	SQL Server Database Settings
	AutoGrowth
	ODBC

	Database Maintenance Plans
	Third-party (Application) Access to Database
	Change Log

