
PureConnect®

2019 R3

Generated:

11-September-2019

Content last updated:

21-June-2019

See Change Log for summary of
changes.

CIC Speech Recognition
Overview

Technical Reference

Abstract

This document covers the speech recognition subsystem, a powerful
component of Customer Interaction Center (CIC) that gives customers
the flexibility in defining voice and DTMF inputs for their Interactive
Voice Response (IVR) system. Speech recognition functions are
accessible using handler tools that provide building blocks for the
speech application. These recognition tools allow a handler developer to
take advantage of simple yes/no voice responses or develop something
more complex using standard based SRGS grammars.

For the latest version of this document, see the PureConnect
Documentation Library at: http://help.genesys.com/cic.

For copyright and trademark information, see

https://help.genesys.com/cic/desktop/copyright_and_trademark_information.htm.

1

http://help.genesys.com/cic
https://help.genesys.com/cic/desktop/copyright_and_trademark_information.htm

2
3
3
4
4
4
5
5
5
6
6
6
6
7
8
9
9

10
10
10
11
12
13
14
17

Table of Contents
Table of Contents
Introduction to CIC Speech Recognition

Prerequisites
Process Basic Inputs

Start a recognition session
Add a prompt
Configure Reco Basic Input
Analyze the result

Result
Hypothesis
Utterance
Slot
Custom elements

Release the Session
Reco Basic Input Example

Process Grammar Referenced Inputs
Register a Grammar
Configure Reco Input
Analyze Reco Results
Reco Get Slot Value/Reco Bind Slot Values
Reco Input Example
Grammar Example

Support Other Languages
Error Handling
Change Log

2

Introduction to CIC Speech Recognition
A large part of any "Interactive Voice Response" (IVR) application is input recognition. The application has to be able to process a
user's response to a specific prompt intelligently. PureConnect's recognition (Reco) subsystem interprets user input accurately,
whether it's DTMF or voice. The Reco subsystem has a built-in DTMF recognizer that detects accurately the frequencies or tone of
any key on a touchtone keypad or telephone. It also wraps engines from leading automatic speech recognition (ASR) vendors to
take advantage of their advance voice processing capabilities such as endpointing, noise cancellation, and acoustic-phonetic
analysis.

Another quality of the Reco subsystem is its advance grammar support and semantic interpretation. It uses W3C's SRGS standard
for specifying grammars and supports SISR for semantic interpretation of recognition results. Grammar registration and result
analysis are simplified using a wide array of recognition tools.

The Reco subsystem supports other features such as load balancing, intelligent grammar caching, built-in grammar support, and
web-based administration.

The CIC Speech Recognition Overview Technical Reference describes how to get started using recognition tools in handlers to
create simple applications. One example walks you through prompting and processing a simple yes or no response from a user.
Another example shows how to register a grammar and use the Reco Input tool to use that grammar.

For more information about other PureConnect products, see the PureConnect Documentation Library at https://help.genesys.com.

Prerequisites
Before you begin, ensure that you meet the following prerequisites:

Your organization purchased a valid Speech Recognition license for the CIC server.
Your organization purchased at least one Continuous Speech Processing (CSP)/Speech resource from the Telephony vendor.
Your organization installed at least one ASR Engine with valid licenses.
Your organization configured the ASR Server to work with the CIC server using the web configuration of the ASR Server.

3

https://help.genesys.com/

Process Basic Inputs
Typically, the system only requires simple responses from a user. For example, when the system requests confirmation ("Did you
say ____?") or the system request a quantity ("How many ____ do you want?"). In these cases, the Reco Basic Input tool is sufficient
for capturing input from the user. It is always a good idea to plan your call flow.

Example call flow

For more information, see the following:
Start a recognition session
Add a prompt
Configure Reco Basic Input
Analyze the result
Release the Session
Reco Basic Input Example

Start a recognition session
The first handler step is to start a new recognition session using the Reco Initialize tool. You can also define other session
parameters with the Reco Initialize tool, such as which ASR engine to use, which language to use, or which input modes to use. The
only required parameter is the interaction ID, which is a requirement for most of the tool steps. For this example, we accept the
default parameters of the session.

Add a prompt
To get input from a user, configure the application to request it. Setting up a prompt requires much thought to ensure that the
application is user friendly.

Consider the following:
Accuracy of the prompts based on the grammars used.
Whether the prompts are for DTMF and voice.
Whether the prompts sound natural.

You can use prompts that are either pre-recorded or synthesized dynamically. Pre-recorded prompts usually sound more natural,
although sometimes you can get equal quality voices from modern Text-to-Speech engines such as ITTS or Vocalizer. For this
example, using synthesized text prompts using the Play String tool under the telephony tools is sufficient.

4

Configure Reco Basic Input
Use the Reco Basic Input tool to recognize simple inputs against a built-in grammar. Depending on the ASR Engine installed, the
following grammars may be available: Boolean, digits, date, currency, number, phone, and time. Use the Value Type list box to
specify which grammar to use. These grammar types correspond to the VoiceXML grammars.

Analyze the result
There are several tools that allow you to analyze the result of a Reco Input. The results are in an XML format that is similar to
W3C's Natural Language Semantics Markup Language (NLSML). This format ensures that the results returned are independent of
the engine used. The results are in the following format:

 <result>
 <hypothesis mode="voice|dtmf" conf="confidence" grammar="grammar-id">
 <utterance> recognized words or tokens if available </utterance>
 <slot name="slot-name1" conf="confidence1"> slot value1 </slot>
 <slot name="slot-name2" conf="confidence2"> slot value2 </slot>
 …
 <slot name="slot-nameN" conf="confidenceN"> slot valueN </slot>
 Custom Elements (engine specific)
 </hypothesis>
 <hypothesis … >
 …
 </hypothesis>
 Custom Elements (engine specific)
 </result>

Result

5

The <result> element is the root of the recognition result. It has no attributes. The <hypothesis> child elements are in
decreasing order of confidence. Thus, the highest scoring hypothesis is first.

The <hypothesis> element represents how a recognition engine may have interpreted what the user said (also called utterance).
Therefore, a result can contain several <hypothesis> elements with varying utterances and confidences. You can use the Top N
Answers property to limit the number of hypotheses returned. A hypothesis has the following attributes:

mode
This attribute specifies whether the system obtained this hypothesis through speech or DTMF input. Possible values are:

voice - The hypothesis is based on speech input.
dtmf - The hypothesis is based on DTMF input.

conf
Confidence score of this hypothesis. The value ranges from 0.0 to 1.0.

grammar
This attribute contains the Grammar ID of the grammar that accepted this hypothesis.

The <utterance> element contains the transcription of the recognized utterances, either as words or tokens. The exact
representation in this string is engine-dependent and may contain special filler tokens (such as from garbage rules). Basically, this
element contains the tokens that caused the grammar match. The value of this element is not for automatic processing but rather
for debugging and logging purposes. For DTMF input, it contains the pressed keys without the termination character. This element
is empty for engines that don’t supply the raw utterance/tokens.

Each recognition hypothesis may contain one or more slots that the grammar fills. The value of the element represents the value of
the slot. Some engines support nested interpretation results and thus slot elements may be nested. The <slot> element has the
following attributes:

name
The name of the slot. This attribute is optional, as some engines may not provide names for the slots. The slots are in the
order that the ASR engine provides (usually, order of tags in grammar).

conf
Confidence score of this slot. This attribute is optional and only present for engines that support this feature. If the attribute
is not present, clients can assume that the confidence is 1.0.

Both <hypothesis> and <result> elements may have custom elements. The engine integration module creating the recognition
result appends these elements to the end of the corresponding element. They provide an engine integration module with the ability
to return any engine-specific data in the recognition result (for example, more statistics). The Reco subsystem or tools do not
interpret these custom elements.

Hypothesis

Utterance

Slot

Custom elements

6

The Reco tools that are available to analyze results allow an application to iterate through the XML results and view the properties
for each hypothesis and slot. For built-in grammars (like the example), the recognition results have a special slot named _value
that contains the normalized string representation of the data type that the built-in grammar represents. For example, the Boolean
built-in grammar has a result value of true or false.

The Reco Basic Input tool exposes this value using the Top "_value" Slot output parameter that's in a string variable. In the example,
it compares the variable to true or false.

Release the Session
A handler can explicitly use the Reco Release tool to indicate that the interaction is finished with the recognition session. Use with
care because all context information for the session is lost. Also, it can be expensive to set up a new session so an interaction has
to be certain that it is finished with recognition before calling Reco Release.

If you don't use the Reco Release tool, the session releases automatically when the interaction disconnects.

7

Reco Basic Input Example

8

Process Grammar Referenced Inputs
You can handle more advance inputs using the Reco Input tool. The Reco Input tool takes in a list of grammars to do recognition
against. Ensure that you registered the grammars previously using the Reco Register Grammar or Reco Register Grammar String
tool.

Example call flow

For more information, see the following:
Register a Grammar
Configure Reco Input
Analyze Reco Results
Reco Get Slot Value/Reco Bind Slot Values
Reco Input Example
Grammar Example

Register a Grammar
The first step is to register a grammar to use during the Reco Input. The Reco subsystem supports W3C's SRGS format, which
provides a standard way to specify grammars across all engines. It also supports engine-specific grammars when needed, such as
Nuance's GSL format and Open Speech Recognizer's binary grammar format. To register a grammar, a handler can use the Reco
Register Grammar tool and specify the path to the grammar file. Or, it can use the Reco Register Grammar String and specify the
source of the grammar directly in the tool step.

In the following example, we are registering an SRGS grammar file in ABNF format called drink.gram.

9

Configure Reco Input
Calling the Reco Input tool starts the recognition and sends the request to the ASR Server. The tool step takes in a space-delimited
list of grammars to use during the recognition. All other parameters are optional. Like the Reco Basic Input tool, this tool returns
the recognition result in XML format.

In the following example, we are using the grammar ID that the Reco Register Grammar tool returned.

Analyze Reco Results
The Reco Analyze Results tool is useful for analyzing whether the recognition results are reliable enough to use, or whether
multiple results need disambiguated. If you have a grammar with several items that sound alike and can be mistaken for one
another, we recommend that you include this step.

Reco Get Slot Value/Reco Bind Slot Values
Results contain slots that define the semantic meaning of an utterance. This tool extracts the values of those slots from a specific
hypothesis. In our example, the slots contain the size and type of drink requested. You can also use the Reco Bind Slot Values
toolstep to extract several slot values at once and bind them to existing variables.

10

Reco Input Example

11

Grammar Example
The following example is of the SRGS grammar file used in the previous example.

 #ABNF 1.0;
 language en-us;
 mode voice;
 tag-format <semantics/1.0>;
 root $root;

 public $root = [I would | "I'ld"] [like]

 [a | an | one]
 $size

 {out.size=rules.latest();}
 $drink

 {out.drink=rules.latest();}
 [please];

 private $size = small {out="small";}|

 medium {out="medium";}| large {out="large";}|
 extra
 large {out="extra

 large";};

 private $drink = [diet {out="diet ";}]

 (pepsi {out=out+"pepsi";}| (coke | coca cola) {out=out+"coke";}

 | sprite

 {out=out+"sprite";}| mountain dew {out=out+"mountain

 dew";});

12

Support Other Languages
By default, the Recognition subsystem uses the default language configured for CIC. You can view the default language in the
System Configuration container in Interaction Administrator. To use a different language for a recognition session, specify an ISO
language code during the Reco Initialize tool step. Also, you have to ensure that all grammars used for that session are in the
language specified since most recognition engines only support a single language at a time using a specific set of acoustic models
for that language. Each ASR engine has its own setup for different languages so it is best to consult the ASR engine's
documentation for instructions.

13

Error Handling
Most Reco Tools return errors in the form of an error code and description. The following table provides a summary of those error
codes.

Code Description

connection.disconnect Call disconnected during the operation.

noinput No input provided during the timeout period.

nomatch Input provided didn't match any grammars.

maxspeechtimeout Maximum speech timeout exceeded.

com.inin.input.escape Escape key pressed.

com.inin.input.tone Fax tone detected.

error Unspecified error occurred

error.unsupported.format Specified (media) type for the resource not supported.

error.unsupported.language Specified language not supported.

error.unsupported.builtin Specified built-in grammar not supported.

error.noresource Operation failed because the resource limit was reached.

error.noresource.license Operation failed because a license was unavailable. For example, ASR port license.

error.noresource.cpustarvation Recognition stopped because of excessive CPU load.

error.noauthorization Operation failed because user didn't have the appropriate permissions (does not
include file access errors).

error.semantic Runtime error occurred. For example, attempt to divide by 0.

error.com.inin PureConnect-specific error prefix.

error.com.inin.interaction_id Specified interaction ID is invalid (not a known interaction).

error.com.inin.interaction_type Specified interaction type is invalid (not a call).

error.com.inin.inputmodes Specified input modes are invalid (mask to degenerate case).

error.com.inin.ownership Specified ownership token does not represent the current owner of the interaction or
the ownership was lost.

error.com.inin.parameter[.name] Specified parameter is invalid.

error.com.inin.mode Error related to the modes.

error.com.inin.mode.invalid Specified mode is invalid.

error.com.inin.type Media (MIME) type error occurred.

error.com.inin.type.invalid Specified media type is invalid.

error.com.inin.unsupported Operation or function not supported.

error.com.inin.timeout Operation timed out.

Note: This error is not an input timeout (which returns "throughnoinput"). For
Notifier operations, it corresponds to MSG_TIMEDOUT.

14

error.com.inin.win32.<xxx> Common Win32 error. <xxx> is the numeric error code.

error.com.inin.cancelled Operation canceled for some reason.

error.com.inin.internal Unspecified internal error occurred (see trace log).

error.com.inin.shutdown A system is in the process of shutting down or is shut down already.

error.com.inin.notifier Notifier error prefix.

error.com.inin.notifier.rejected Notifier request rejected (subsystem down?). Corresponds to MSG_REJECTED.

error.com.inin.notifier.noconn No Notifier connection exists. Corresponds to MSG_NOCONNECTION.

error.com.inin.notifier.cancelled Notifier operation canceled. Corresponds to MSG_CANCELLED.

error.com.inin.notifier.badconn Notifier connection failed or shut down. Corresponds to MSG_BADCONNECTION.

error.com.inin.notifier.wokeup Notification loop woke up. Corresponds to MSG_WOKEUP.

error.com.inin.reco.session.inactive Operation is only valid when a Reco session was created (and operation doesn't
create a session automatically).

error.com.inin.reco.session.tied Cannot change the ASR engine as the session already has an engine and the engine
disallows changes.

error.com.inin.reco.asr ASR server or engine integration error.

error.com.inin.reco.asr.engine ASR engine error.

error.com.inin.reco.asr.engine.unknown Specified ASR engine not supported.

error.com.inin.reco.asr.engine.parameter Specified ASR engine parameters are invalid.

error.com.inin.reco.asr.engine.error Error occurred starting the ASR engine.

error.com.inin.reco.feature Specified feature not supported.

error.com.inin.reco.busy Recognition is active; cannot execute the operation.

error.com.inin.reco.property.unknown Attempt to access an unknown property.

error.com.inin.reco.property.read_only Attempt to modify a read-only property.

error.com.inin.reco.property.invalid_value Attempt to set an invalid property value.

error.com.inin.reco.customop.unknown Attempt to invoke a custom operation that's unknown or not supported.

error.com.inin.reco.verifier Speaker training, verification, or identification error.

error.com.inin.reco.verifier.key Key specified for verification or identification not found.

error.com.inin.grammar Unregistered Grammar ID or undefined value type specified.

error.com.inin.grammar.unknown Unknown or invalid grammar specified for input or unregistering.

error.com.inin.grammar.id.duplicate Specified Grammar ID in use already.

error.com.inin.grammar.id.invalid Specified Grammar ID is invalid. For example, format or syntax.

error.com.inin.grammar.rendering Failed to render the grammar into an ASR engine-specific grammar.

error.com.inin.grammar.language Language error occurred. Most likely, the grammar contains an unsupported language
or engine doesn't support language attachments.

15

error.com.inin.grammar.tags Error related to the semantic interpretation tags of the grammar occurred. For
example, engine integration doesn't support global SI tags.

error.com.inin.grammar.runtime.sisr Runtime error occurred interpreting the tags as SISR scripts.

error.badfetch Fetching the grammar data or compilation failed.

error.badfetch.uri URI used to designate the grammar is invalid.

error.badfetch.builtin Built-in grammar URI is invalid (mode or type).

error.badfetch.encoding Invalid character encoding specified.

error.badfetch.grammar Compilation of the grammar failed.

error.badfetch.grammar.syntax Compilation of the grammar failed because of a syntax error.

error.badfetch.grammar.syntax.sisr Compilation of the grammar failed because the content of a tag is not a valid SISR
script.

error.badfetch.grammar.mode Grammar has a different mode than specified in the tool.

error.badfetch.grammar.type Media type of the grammar not supported, invalid, or doesn't match the data.

error.badfetch.grammar.size Grammar data size is excessive.

error.badfetch.file.notfound File not found.

error.badfetch.file.accessdenied Access to the file denied.

error.badfetch.file.sharingviolation Sharing violation occurred.

error.badfetch.file.win32.<xxx> Some other error occurred. <xxx> is Win32 error code.

16

Change Log
The following table lists the changes to the CIC Speech Recognition Overview Technical Reference since its initial release.

Date Change

25-February-2013 Updated Copyright and Trademarks for 2013

01-August-2014 Updated documentation to reflect changes required in the transition from version 4.0 SU# to CIC 2015 R1, such
as updates to product version numbers, system requirements, installation procedures, references to
Interactive Intelligence Product Information site URLs, and copyright and trademark information.

01-July-2015 Updated cover page to reflect new color scheme and logo. Updated copyright and trademark information.

09-October-2015 Updated the document to reflect the CIC 2016 R1 version.

04-February-2016 Updated Copyright and Trademarks for 2016.
Updated the document to reflect the CIC 2016 R2 version.
Added a link to the CIC Documentation Library at help.genesys.com.

24-October-2017 Rebranded this document to apply Genesys styles and terminology.
Updated Copyrights and Trademarks
ISR Confidence Scoring: The accuracy of Interaction Speech Recognition (ISR) confidence scoring has
been improved for short phrases in selected languages.

04-January-2018 Corrected several minor typographical errors.

13-July-2018 Corrected typographical and grammatical errors.

21-June-2019 Reorganized the content only, which included combining some topics and deleting others that just had an
introductory sentence such as, "In this section...".

17

https://help.genesys.com/cic

	Table of Contents
	Introduction to CIC Speech Recognition
	Prerequisites

	Process Basic Inputs
	Start a recognition session
	Add a prompt
	Configure Reco Basic Input
	Analyze the result
	Result
	Hypothesis
	Utterance
	Slot
	Custom elements

	Release the Session
	Reco Basic Input Example

	Process Grammar Referenced Inputs
	Register a Grammar
	Configure Reco Input
	Analyze Reco Results
	Reco Get Slot Value/Reco Bind Slot Values
	Reco Input Example
	Grammar Example

	Support Other Languages
	Error Handling
	Change Log

