= S GENESYS

@—

PureConnect®

2019 R3

Generated:

11-September-2019

Third-Party Integration

Content last updated:

24-June-2019 .
Technical Reference

for summary of
changes.

Abstract

This document is for developers and technical managers who want to
understand how Customer Interaction Center can be extended
programmatically to accommodate unique business needs.

For the latest version of this document, see the PureConnect
Documentation Library at: http://help.genesys.com/cic.

For copyright and trademark information, see
https://help.genesys.com/cic/desktop/copyright_and_trademark_information.htm.



http://help.genesys.com/cic
https://help.genesys.com/cic/desktop/copyright_and_trademark_information.htm

Table of Contents

Table of Contents
Introduction to Third-Party Integration

CIC platform extensibility options

Integration activities and corresponding software support
IC Server Extensibility

About Interaction Designer

Interaction Designer DLL Tool API

Interaction Designer COM API

Designer COM objects
Desktop Application Extensibility
DDE-based screen pop
Should I use IceLib instead of DDE?
Interaction Center Extension Library (IceLib)
Other Interface-Based APIs
About the Component Object Model
e-FAQ COM API
Interaction Campaign COM API
Predictive Dialer COM API
Web Service Extensibility
SOAP Tools in Interaction Designer
Initiator Tools
Request Tools
Payload Processing Tools
Invocation Tools
Helper Tools
SOAP Notifier COM API
ISOAPBase64 Interface
Methods
ISOAPNOotifierTransport Interface
Methods
Properties
ISOAPRequest Interface
Methods
Properties
ISOAPResponse Interface
Methods
Properties

SOAP-Related Documentation

What is the ICWS SDK?

Should You Use ICWS or IceLib?
Third-Party Integration Conclusion
Glossary

Terms used by IceLib Developers

Terms used by e-FAQ Developers

Terms used with SOAP and XML Technology
Change Log

NNNootwwwiN

NNoodoooooooo oo auaaanaadaaaanaddlad a2 aaaa=
OWRARPOVN AL O0OO0OOVOOVWOOVWOOmONITaaNDONNWWoOOoOoOo O




Introduction to Third-Party Integration

Virtually every office or call center has unique requirements that call for customized processing of transactions and customer
interactions. PureConnect provides tools and application programming interfaces (APIs) that help customers create dynamic
telephony applications.

A growing number of APIs based on .NET or the Common Object Model (COM) deliver robust third-party integration with CIC,
tightening integration of desktop applications with the CIC server. CIC's object- and message-oriented design makes the system
extensible at both the server and desktop levels.

Customers can develop applications that add or extend telephony functionality at the desktop, server, or web service level. The
Third-Party Integration Technical Reference describes development aids that make third-party integration possible. It is for
developers and technical managers who want to understand how CIC can be extended programmatically to accommodate custom
business requirements. It is helpful to read the document before exploring developer-oriented publications that provide low-level
programming details.

CIC platform extensibility options

The following diagram illustrates the platform extensibility options for third-party integration to CIC.
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Integration activities and corresponding software support

Use links below to locate topics that most interest you.




Developer Requirement

Supporting Software

Create custom .NET application with
robust CIC functionality

Interaction Center Extension Library - (IceLib) Recommended API for custom CIC
integration.

Create handlers that provide precise
control over interactions in CIC

Interaction Designer - Visual tool for writing telephony applications, without writing
code.

Develop your own custom tools for
developing handlers

Interaction Designer DLL Tool API

Process SOAP requests and messages

SOAP Tools in Interaction Designer

Write a program that manipulates handler
objects

Interaction Designer COM API

Write a program that can invoke handlers

SOAP Notifier COM API

Write a progam that manipulates e-FAQ
objects

e-FAQ COM API

Pop an application or web page when
interactions alert on a queue

DDE-based screen pop

By configuring actions in Interaction Administrator, you can easily screen pop an
application on the agent's desktop, or open a web page when an interaction alerts
on a specified workgroup or user queue.

Develop scripts that guide agents through
stages of a campaign call

Interaction Scripter API - See "Interaction Scripter API" in Predictive Dialer COM API.

Develop custom applications or web pages
that provide limited Supervisory control
over Interaction Dialer

Interaction Campaign COM API

Develop custom applications that pop like
Interaction Scripter client

Predictive Dialer COM API

Develop custom application with features
like Interaction Scripter client

Dialer IceLib API - See "Dialer IceLib API" in Predictive Dialer COM API.

Since customers have many options at their disposal, this discussion is grouped into these major categories:

e CIC Server Extensibility
e Desktop Application Extensibility

e Web Service Extensibility




IC Server Extensibility

Telephony systems can be notoriously difficult to customize."One size fits many" solutions limit your ability to customize
interactions with customers. The high price of proprietary hardware, which is inevitably bundled with high-priced service contracts,
makes it difficult to affordably differentiate your company's service offerings from your competitors.

Fortunately, Customer Interaction Center (CIC) provides the integrated set of tools you need to customize its packaged modules.
You can add new functionality to this already robust system, and you can integrate your own custom applications with CIC.

Solutions based upon proprietary hardware and software often require specialists to manage the system. Even simple changes can
be costly and cumbersome. CIC helps you avoid the hassles and expenses associated with integration of proprietary systems, by
providing tools and APIs that seamlessly integrate new functionality into a system that was designed from the ground up to be
extensible.

For more information, see the following:
e About Interaction Designer

e Interaction Designer DLL Tool API
e |nteraction Designer COM API

About Interaction Designer

Interaction Designer is a visual programming environment for Customer Interaction Center that makes it easy to create
sophisticated server applications without writing code. Interaction Designer is powerful. CIC's default event-processing behaviors
were created using Interaction Designer. Interaction Designer empowers any trained entry-level programmer to change the
functionality of a CIC system.

Electronic interactions between customers and businesses can take many forms. For example:
e Sending and receiving email
e Sending and receiving faxes
e Sending and receiving voice mail
o Simple and multi-party telephone calls
e Internet-based calls and chat sessions
Remote access to voice mail, email, and faxes
e |Intelligent call routing (ACD)

Each interaction is triggered by an event detected by CIC, which, in turn uses an initiator to launch a handler to respond to the event
and process it appropriately.

A handler is a logical flow of actions authored by an administrator or developer using Interaction Designer (ID). These actions are
composed of small steps that do work of some sort. The author of a handler creates steps by dragging them from tool palette.
Tools are template definitions of steps.

CIC includes predefined initiators to cover all the most-common events detected in business interactions. Interaction Designer, the
premier development tool bundled with CIC, makes it easy to create seamlessly integrated telephony applications.

Interaction Designer uses a visual programming metaphor. Traditional programming tools require developers to construct
statements in a programming language. Interaction Designer permits developers to visually lay out logic needed to respond to a
given event, by arranging and connecting graphical objects on the screen. Each object performs a specific task, such as sending a
fax, e-mail, or routing a call.
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Telephony applications are created in Interaction Designer by arranging tools steps in a logical sequence.

Interaction Designer creates event-processing programs called handlers. Handlers encapsulate program logic within graphically
connected nodes, called steps, for events processed by the CIC server. Each step is created by dragging a tool (a template
definition of each step) from a palette, pasting it in the workspace, and editing the tool's properties. Interaction Designer provides
an extensible palette of tools that serve as building blocks for building handlers.

The first step in each handler is an initiator. An Initiator identifies the event that starts a handler. An example of an event might be
"Incoming Call". When the Interaction Processor receives a notification that an "Incoming Call" event occurred, it starts the handler
whose initiator is configured for "Incoming Call".

When you finish building a handler, you can elect to have Interaction Designer publish it. Publishing a handler converts your visual
design to Java source code. (Absolutely no knowledge of Java is required. Visually designed logic is automatically converted to
Java program code that is compiled to create a highly efficient server application.)

The process of building handlers can be broken down into these six steps.

1. Research. Start by becoming familiar with the handlers and subroutines currently running on your CIC system.

2. Design. Map out the functionality of the handler you plan to build, and figure out how it might interact with the other handlers
and subroutines.

3. Build. Create and link steps to define new functionality, using Interaction Designer.

4. Publish. The automated Publish process compiles your handler and moves it to the server.

5. Test. Test the handler on your live system or on a second system you've set up for testing purposes. We highly recommend the
latter.

6. Activate. If you are not already using the handler on your live system, activate the handler.

When you publish a handler, events configured for its initiator are registered with the Interaction Processor. Interaction Processor
then instructs the Notifier that it wants to be notified any time that event occurs. Whenever the event occurs, Notifier tells the
Interaction Processor, and Interaction Processor starts a new instance of the handler. The active lifetime of a handler is very short,
since handlers terminate after processing an event.

Sometimes, modifying an existing handler is the best way to implement new functionality. For example, you might want to add a
new key-press option for callers using your IVR (Interactive Voice Response) system. In this case, adding new functionality involves
recording a new prompt, adding a condition to a Selection step, and adding additional steps to your existing IVR handler. You don't
need to write a new subroutine or handler to add simple functionality. To make minor changes or additions to CIC, it is often best to
modify existing handlers or subroutines. For more information about Information Designer, refer to Interaction Designer Help.
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Interaction Designer DLL Tool API

You may be wondering, "What if | need functionality that Interaction Designer doesn't include? Can | create my own tools, and use
them with Interaction Designer?"

The answer is yes. Interaction Designer DLL Tool API provides the means to create tools for any type of situation. Your new tools
can be added to Interaction Designer's standard tool palette.

Interaction Designer DLL Tool API allows a DLL to be registered as a new Interaction Designer tool. Tools are used to create
handlers for the CIC system. Each tool corresponds to a function in a DLL. Tools are template definitions for steps in a handler.
Your tool DLL may contain business logic that is unique to your organization, or it may perform operations on data collected by
agents in a call center. Your custom DLL might process a credit card transaction, for example.

To use this API, you must be familiar with C programming and with the basic concepts of Interaction Designer, handlers, and the
handler development process. Handler developers can then use your custom tool to build handlers with virtually unlimited
functionality.

Interaction Designer COM API

The Interaction Designer COM API gives developers programmatic control over the familiar visual objects exposed by Interaction
Designer. This API provides object-oriented access Designer "objects", such as handlers, tools, subroutines exit paths, and aspects
of Designer itself.

Developers who are familiar with handler development and with a programming language that supports the component object
model can use this API to create applications that integrate with Interaction Designer.

As mentioned earlier, Interaction Designer is the visual programming environment for CIC that creates sophisticated server
applications. Designer is powerful-all of Customer Interaction Center's default event-processing behaviors were created using
Interaction Designer, without writing code.

The Interaction Designer COM API makes it possible to manipulate objects in Interaction Designer by writing procedural code, using
traditional programming languages such as C++ or Visual Basic 6.

New objects, such as handlers, can be created on the fly. The APl is a gateway into Interaction Designer that provides access to
tools, handlers, steps, messages, subroutines, initiators, exit paths, and to properties of Designer itself. This APl is compatible with
Windows programming languages that support COM.

Designer COM objects

In Interaction Designer, handler developers lay out logic that responds to a given event by arranging and connecting on-screen
graphical objects. Each object performs a specific task, such as sending a fax, e-mail, or routing a call. These event-processing
programs are called handlers.

Handlers encapsulate program logic within graphically connected nodes, called steps, for events processed by the CIC server. Each
step is created by dragging a tool (a template definition of each step) from a palette, pasting it in the workspace, and editing the
tool's properties. Interaction Designer provides an extensible palette of tools that serve as building blocks for building handlers.

The first step in each handler is an initiator-it identifies the event that starts the handler. An example of an event might be "Incoming
Call". When Interaction Processor receives a notification that an "Incoming Call" event has occurred, it starts the handler whose
initiator is configured for "Incoming Call".

Interaction Designer publishes handler logic. This process converts visually designed logic to Java program code that is compiled
to create a highly efficient server application. Most non-visual objects (supported by the API) are analogs of familiar visual objects
in Interaction Designer. For example, a handler object in the API provides access to a collection of step objects. The image below
shows the correlation between visual elements in Interaction Designer and objects exposed by the API:
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Interfaces in the Designer COM API provide access to familiar objects such as handlers, tools, subroutines, or variables, and even
to some aspects of Designer itself. Each step has properties such as the step name, position, and exit paths that can be managed
programmatically. Likewise, you can call methods that perform actions on Designer objects. For example, you can publish a handler
by calling the Publish method of a handler object, or open a handler by calling the OpenHandler method of the Designer object.
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The 13IDStep, lI3IDStepLink, and lI3IDExitPath interfaces wrapper tool steps, exit paths, and linkages between steps.

Note:
l Interaction Designer must be running when Designer COM applications are executed. l

This API provides a comprehensive set of classes that wrapper tools, handlers, steps, messages, subroutines, initiators, exit paths,
and properties of Designer itself. New objects (handlers, steps, etc.) can be created and published under program control, and
existing objects can be enumerated and modified on the fly.
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Note:
For more information about Interaction Designer COM AP, see the Interaction Designer COM API Reference at

https://help.genesys.com/cic/mergedProjects/wh_dcom/desktop/designer_com_api_reference.htm. It provides a complete
reference to objects, methods, and properties.
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Desktop Application Extensibility

Following are links to techniques that customers can use to extend the functionality of desktop applications, ranging from simple screen
pop to complex APIs that developers use to create desktop applications. A common need is to launch an application in response to a
communications event, such as a telephone call. The telephony industry term for this is screen pop.

e DDE-based screen pop

e |Interaction Center Extension Library (IceLib)

e Other Interface-Based APIs

DDE-based screen pop

The simplest way to pop an application is to use Dynamic Data Exchange (DDE), an inter-process communication method that allows
applications to exchange data and commands. DDE actions can be configured in the Customer Interaction Center to launch an application
on an agent's desktop when a call (or other communications event) alerts for that agent in Interaction Desktop.

Note:

Interaction Desktop is the software phone application that adds the sophistication of executive telephones to any telephone handset.
Interaction Desktop makes it easy to answer, record, conference, place, and transfer calls. Businesses and call centers use
Interaction Desktop to manage customer interactions at the desktop.

Most Windows business applications provide a DDE interface. For example, Interaction Desktop can launch Excel, Word or any DDE-
compliant custom application on an agent's desktop when a call alerts for that agent.

DDE is based on the concept of client and server applications. The third-party application that sends data is known as the DDE server. The
application that receives and manipulates data (or commands) from the server is referred to as the DDE client.

e |Interaction Desktop functions as a DDE client only. It cannot be used as a DDE server. Interaction Desktop can pass messages to
invoke other DDE-enabled applications when a call alerts, disconnects, or is transferred from an agent's station, but it cannot accept
commands from applications.

e The data passed from CIC to the DDE server (third party application) can include the caller's ID and any other attribute information
associated with that interaction.

No programming is required to take advantage of Interaction Desktop's built-in DDE support. To pop applications when calls arrive on a
workgroup or user queue, the requirements are:

1. Interaction Desktop must be running on the agent's system. It can be minimized.

The application to pop must conform to Microsoft DDEML specifications. In other words, it must support DDE.
The application to pop must be installed on the agent's workstation in the System Path.

The application to pop must be defined as an action in Interaction Administrator.

The DDE action must be registered with a specific user or workgroup queue. That tells CIC to notify Interaction Desktop when it
should pop the application in response to a communications event, such as a call alerting on the queue.

ok N

The ability to pop familiar application software saves time, money, and internal training costs. DDE integration with Interaction Desktop
conserves resources, especially for agents who are familiar with a customer support application.

Should I use IceLib instead of DDE?

Applications need not use DDE to pop an application in response to an incoming call. Similar functionality can be provided by IceLib. The
choice is up to you.

One difference between DDE and the other APIs is that DDE applications use Interaction Desktop to start another application and then
pass call attribute information into it. IceLib does not use or require Interaction Desktop. It is worth noting that IceLib requires a license
purchase. DDE is free.

Significant programming expertise is required to develop IceLib applications. If your organization is supported by a staff of experienced
programmers, then IceLib may suit your needs. However, if simple screen pop is all you need, the DDE approach provides a simple and
reliable mechanism that is easily implemented. IceLib is discussed later in this document.

For more information about DDE, see the Interaction Desktop DDE API Developer's Guide at
https://help.genesys.com/cic/mergedProjects/wh_dde/desktop/interaction_client_net_edition_dde_api_developers_guide.htm. It explains
how to define and register actions, and provides other details about DDE.

Interaction Center Extension Library (IceLib)

Interaction Center Extension Library (IceLib for short) is the premier development tool for desktop application development. This uniquely
modern APl is for developers who use modern .Net languages, such as C# or VB.Net.
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IceLib provides a clean architecture that applications and ThinClient plug-ins can use to manage sessions with CIC. IceLib provides
session creation and login functions that allow applications to connect with one or more CIC servers using the login options that are
available to ThinClient applications (e.g. user, password, station, remote number, remote station, persistent, audio enabled, etc.). The
figure below illustrates the tight coupling between IceLib and the Customer Interaction Center system architecture.
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IceLib interfaces with SessionManager, the CIC subsystem that brokers connections between client applications and a given CIC server.
Custom IceLib applications fully leverage SessionManager, just like internally developed CIC applications. For example, Interaction
Desktop, Interaction Fax, and Interaction VoiceMail all use IceLib and take advantage of its SessionManager capability. IceLib is feature-
license based, not per-seat or per-session. Client sessions require client licenses, of course.

IceLib provides the means to work with Interactions, Directories, People, Interaction Tracker, and Unified Messaging. It manages
connections with the CIC server, specifies authentication and station settings, watches for connection state-change events, and performs
actions relative to the connected Session user.

IceLib gives applications the ability to monitor interactions and queues. An interaction in a queue can be watched for attribute changes.
Applications can receive notifications when interactions are added or removed from a queue. Monitoring can be scoped to a given
interaction, or to all interactions within a queue. Chats, Emails, and conferences can be monitored, along with telephone calls and other
interaction types. In IceLib, objects and object watches contain only the data that the developer requests.

Change notification is implemented using events that follow the common Object/EventArgs pattern. This allows multiple notification
recipients to be registered. It also allows recipients granular control over which notifications they receive. Developers should name the
custom delegate for an event "FooEventHandler". "Foo" does not have to match the name of the event if FooEventHandler is generally
useful for multiple events in the system. FooEventHandler's first parameter should be "object sender" and the second parameter should
either be "EventArgs e" (and set to EventArgs.Empty) if no arguments are needed, or if a custom FooEventArgs class that inherits from

EventArgs (or CancelEventArgs).

IceLib follows the direction that Microsoft has taken with public APIs. It conforms with Microsoft's design guidance and best practices
for public APIs and framework development. It utilizes familiar style and naming conventions and it is based on Microsoft's .Net 2.0
technology framework. For example, IceLib is object-based, rather than interface-based. This reflects the direction that Microsoft and the
.NET technologies have taken to go beyond COM, in accordance with the .NET Framework Design Guidelines.

IceLib conforms to the Common Language Specification (CLS), a standard that defines naming restrictions, data types, and rules to which
assemblies must conform if they are to be used across programming languages. This means that IceLib is compatible with C#, VB.Net,
and all other .Net languages.

IceLib is a strongly-typed API. Common attributes are accessible as properties, enumerations, or constants. IceLib supports generics,
events, asynchronous patterns, and nullable types. Properties are used instead of public fields. This helps make the API future-proof, since
changes can be made to a property get/set without affecting existing third-party application usage.
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IceLib provides a consistent set of stable interfaces, that expose ThinClient feature sets to third-party applications. It provides a stable
foundation for ThinClient plug-ins and provides support for stand-alone applications. IceLib's internal consistency promotes intuitive use,
and its adherence with .Net eases understanding, reduces ramp-up time, and speeds development.

Consistent API design promotes intuitive use by application developers. Further, it can reduce the number of bugs when correct usage
patterns have previously been learned. The ease of use improvements gained through design consistency are sometimes termed "The
Power of Sameness". This is beneficial to customers since it can reduce application development costs.

IceLib provides synchronous (blocking) and asynchronous (non-blocking) versions of most methods, especially those methods that make
a server call. This convention allows the developer the convenience of choosing which programming model to use. It also allows him to
switch back and forth between the two models where appropriate within the same application.

In IceLib, errors are reported via exceptions rather than by returning or querying error codes. Methods are designed to "fail fast", by
evaluating parameters early and to throw meaningful argument exceptions. This helps developers to identify issues with code more
quickly and easily.
IceLib ships with full-featured sample applications in several languages (C#, VB.NET, ASP.NET). Each application is commented and
designed to illustrate "best practices" of a real implementation. The examples cover key topic areas, such as:
e Interactions, Queues, and Voicemail (C#)
Workgroups, Users, and Statuses (VB.NET)
User Rights, Access, Status Messages, Workgroups, etc. (C#)
Directories and Statuses (ASP.NET)
Directories Metadata & Paged Views (C#)
More Directories (C#)
Tracker Types Information (C#)
Tracker Queries (C#)

12



Other Interface-Based APIs

Without question, component software makes it easier to develop computer programs. Customer Interaction Center supports
sophisticated software components that empower programmers to construct robust telephony applications. These components are
compatible with any Windows programming language that supports Microsoft's Component Object Model.

1. PureConnect also develops COM components for its non-CIC products, such as e-FAQ. The e-FAQ COM API| wrappers objects in a
"Frequently Asked Questions" database, called an FAQ. The components of this API provide programmatic control over addresses,
keywords, aliases, entries, killwords, and other constituent parts of a frequently asked question. It also permits developers to
manipulate queries, entries, and query results.

2. The Interaction Campaign COM APl empowers developers to create custom applications or web pages that provide limited campaign
administration functionality in an Interaction Dialer environment. Interaction Dialer is a predictive dialing add-on for CIC that
enhances the efficiency of outbound call centers. Interaction Dialer automates many manual tasks that agents perform. For example,
it retrieves a telephone number from a call list file, appropriates an outbound line, dials the number, and waits for the call to be
answered before routing the connected party to an agent. Dialer detects ring/no-answer conditions, busy signals, FAX tones and
answering machines. Agents receive only calls that have reached a targeted party.

3. Dialer includes Interaction Campaign Administrator, a robust utility that provides call center administrators with the complete
functionality needed to define and administer campaigns. In some circumstances, it is desirable to limit the level of administrative
control that personnel can exert over Interaction Dialer. For example, a night supervisor who needs to start or stop campaigns does
not necessarily need the ability to define campaigns, or modify schedule settings. The Interaction Campaign COM API makes it
possible to develop custom applications or web pages that provide appropriate supervisory control over the Dialer.

ICCampaign COM Examples
ICCampaignAdmin Example
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Interaction Campaign COM ships with several sample applications. This web page example provides the control needed to administer
a campaign without exposing the advanced functionality of Interaction Campaign Administrator.

4. The Predictive Dialer COM API enables programmers to develop applications that are functionally similar to the Interaction Scripter
client. It provides a callback object that notifies an application when predictive events occur, and a server object whose methods
manipulate and disposition data pops. The server object logs in the agent, transitions to the next stage, and updates contact list data.
It provides overall control over interactions between an agent and the Outbound Dialer server.

5. Other COM components manage interactions between the CIC and external servers. For example, SOAP Notifier COM Components
allow CIC to integrate with external network devices in an IP environment. SOAP is a wire protocol that allows dissimilar servers to
exchange information and to execute commands.

About the Component Object Model

Component Object Model (COM) is the latest in a series of software standards developed by Microsoft. The COM specification explicitly
defines how binary software components may interact with one another. COM also defines the format of compiled machine code,
irrespective of the programming language used to create a COM component.

Since COM is a binary standard, it removes compatibility barriers normally associated with the development of reusable software
components-at least for Windows users. For example, a Delphi programmer can use COM components that were developed by Java, C++,
or VB programmers. Any of these languages can create COM components that are compatible with the others.

Component software has traditionally been targeted at specific programming languages. C++ programmers created VBX controls for
Visual Basic programmers; Delphi programmers bought VCLs. However, the rationale behind component software has always been the
same: to extend the functionality of software, without writing a lot of code, by plugging-in small elements of software.
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In fact, component software has become mainstream, while object-oriented programming has not. COM provides the best features of
both. COM implements object-oriented principles by encapsulating object-oriented, reusable components as binary entities, rather than as
source code stored in language-specific class libraries. COM does this in a way that permits developers to update COM components,
without breaking the applications that use them.

What is a COM object?

In the world of COM, an object is an instance of software that contains the functions (called methods) that represent what the object can
do (its intelligence) and associated state information (called properties) for those functions. An object is a data structure and functions
that manipulate the structure.

COM interfaces

In COM, the only way to manipulate data associated with an object is through an interface to methods in the object. Since developers can
add new functionality without breaking legacy applications, COM overcomes compatibility issues traditionally associated with DLLs.

When a COM component is updated to add additional or improved functionality, a new interface is defined that provides access to new
methods (functions) in the object. Programs written for the original interface continue to work, since the updated COM component still
supports the original, unchanged set of interfaces and methods as it did before, in addition to its new interfaces and methods.

Once the public interface is defined, it can't be changed later. Instead, COM component developers define a new interface that provides
access to methods in the component. Since each set of methods belong to one interface, dramatic changes can be made between
releases of COM components without incurring compatibility problems.

COM objects have Methods and Properties

When a COM component is loaded into memory, its functions are mapped to internal memory addresses. A COM interface is simply a
pointer to a location in memory where a set of functions is stored. Functions are called methods by COM programmers. Methods perform
some sort of action on an object. For example, the publish method of a handler object publishes a handler under control of the Designer
COM API. Many COM objects support properties. A property is an item of data associated with an object. For example, a handler object
has a Name property.

By convention, COM interface names begin with the letter 1, which stands for "interface". All COM objects implement an interface named
IUnknown, which exposes three functions:
e AddRef. The AddRef function increments an internal counter each time the object is referenced.
e Release. The Release function decrements an internal counter each time that an object is released. When the internal reference
counter becomes zero, Windows deletes the object.
e Querylnterface. The Querylnterface function queries a COM object to find out if it supports a particular interface. If it does,
Querylnterface provides a pointer to the set of functions exposed by the interface.

It is unlikely that you will ever need to use IlUnknown to query a CIC-related COM component, since our interfaces, methods, and
properties are fully documented. However, each CIC COM component supports the standard IlUnknown interface and its methods. The
IUnknown interface is not described in any APl documentation, since lUnknown is defined by the COM specification and is always
available.

COM clients and servers

As with DDE, there are COM clients and COM servers. However, in the world of COM, these terms have new meaning.

e A COM server interacts with clients by implementing interfaces that direct the client to methods supported by the interface. In-
process COM servers are DLLs that run on the local machine. Out-of-process COM servers are .EXE files that can reside on the local
machine, or on a networked computer. The COM specification has been extended to provide support for distributed processes
(DCOM) running on remote computers. The term COM is now synonymous with both COM and DCOM.

e A COM client is a program or object that calls methods in one or more interfaces provided by a COM server.

COM is a refinement of the thinking behind OLE, DDE, and ActiveX. COM makes it possible to create truly reusable software components
that are compatible across programming languages. COM provides some relief from version conflicts associated with software updates,
and creates a platform for truly distributed network computing.
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e-FAQ COM API

e-FAQ is a product sold separately from CIC that instantly answers Frequently Asked Questions (FAQs) via e-mail and the Web. E-FAQ is

ideal for companies that use CIC. e-FAQ employs advanced linguistic analysis and artificial intelligence techniques to examine inquiries,
search for matches, and automatically respond when an appropriate match is found. e-FAQ also simplifies the authoring process with its
Knowledge Manager interface, and provides Web site visitors an efficient self-service environment with escalation to live help.
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A sample web page from which a query can be submitted to e-FAQ.

The e-FAQ COM API wrappers objects in FAQ databases. The components of this API provide programmatic control over addresses,
keywords, aliases, entries, killwords, and other constituent parts of a frequently asked question. It also permits developers to manipulate
queries, entries, and query results.

e-FAQ Objects

The following diagrams illustrate objects and collections in the e-FAQ COM API. Interfaces that manipulate objects are represented in the
diagrams using a shaded background. Interfaces that manipulate collections of objects have a white background.

Server Interface Objects

Interfaces in the Server category manage addresses, keywords, aliases, entries, killwords, and other constituent parts of a frequently
asked question.
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| server | | FAQ (/2) |

L| FAQs (/2) | Killwords bl Killword |
Aliases b Alias |

EntryAttributes H EntryAttribute |

Entres (2)  }—{  Emry(/2) |

Entryattribute |

Keywords H Keyword
Hotifyaddresses H MotifyAddress

EntryAttributes |—{ EntryAttribute

T T 1T 1

EntryFesdback |—{ EntryFeadbackitem

Query Interface Objects

Query interfaces define and execute a FAQ query.

| Quary (/2) |

Server |
QueryFAQs b QueryFAQ |
BooleanQueryFlags | FAQ |

EntryAttributes H Entryattribute |

Query Result Set Objects

Query Result Set interfaces provide access to query result set objects. Each query result object represents one row in the result set. You
can obtain statistics about an Entry selected as the result of a query, or enumerate a collection of query result objects.

| QueryResultset |

Server |
Query |
QueryResults H QueryResult !

Entry |

FAQ / Entry Locking Objects

The objects you create using Locking interfaces provide information about the owner of a FAQ or Entry lock.

| Lockinfo |

L| LockOwnerinfo |
| Asyncoperation |

| AsyncError |
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e-FAQ Interfaces

The following table provides links to information about the interfaces in the e-FAQ COM API.

IAlias Interface

IEntryFeedbackltem Interface

1Query Interface

IAliases Interface

IEntryRecycleBin Interface

1Query? Interface

IAliases? Interface

IFAQ Interface

1QueryFAQ Interface

IAsyncError Interface

IFAQ2 Interface

IQueryFAQs Interface

IAsyncOperation Interface

IFAQRecycleBin Interface

IQueryResult Interface

IBooleanQueryConfig Interface

IFagReindexCompletionCallback Interface

IQueryResults Interface

IDeletedEntryData Interface

IFagReindexProgressCallback Interface

IQueryResultSet Interface

IDeletedFAQData Interface

IFAQs Interface

IServer Interface

IEntries Interface

IFAQs2 Interface

IServer?2 Interface

|IEntries2 Interface

IKeyword Interface

IServerNotifications Interface

IEntry Interface

IKeywords Interface

IStringList Interface

IEntry?2 Interface

IKillwords Interface

IVariantList Interface

IEntryAttribute Interface

ILockInfo Interface

Sample e-Faq Programs

IEntryAttributes Interface

ILockOwnerInfo Interface

IEntryFeedback Interface

INotifyAddresses Interface

lAlias Interface

The objects you create using this interface denote an alias. An alias represents a word and its expansion. For example, you can add an

alias that expands "IC" to "Interaction Center".

Methods

ApplyChanges

This method sends the changes you made locally to an Alias to e-FAQ Server. This method fails with an error if the Alias is not
dirty. See also: TAlias:

Clone

This method allows you create a new alias by cloning (copying) the contents of an existing alias. The new alias is not

:IsDirty property.

automatically added to a FAQ. Use FAQ.Aliases.Add to add the new alias to a FAQ.

Revert

This method discards local changes made to an existing alias, and refreshes the alias object by reading the current state from e-

FAQ server.

Properties

Aliasld (Get)

The AliasID property returns the identifier of an alias. The Aliasld is used internally to identify this alias. More precisely, it is the

primary key inthe I3EFAQ F Aliases table.

Applicability (Get)

This property indicates when an alias is to be expanded. The return value is an AliasApplicability constant that indicates

that the Alias will be expanded during indexing, during querying, or at both times.
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Applicability (Put)

This property determines when an alias will be expanded. You must specify one of the abovementioned AliasApplicability
constants as an input parameter.

Expansion (Get)

This property returns a string containing the word or words that an alias will expand to. For example, if the alias is "IC", the
expansion property might return "Interaction Center".

Expansion (Put)

This property assigns the word or words that an alias expands to.
FAQ (Get)

This property returns the FAQ object that owns the alias.
IsDirty (Get)

This property is True if the alias has been modified locally, meaning that changes have not been sent to the server yet.
IsNewAlias (Get)

This property is True if the alias is a new alias object, that has not been added to the Aliases collection of a FAQ.
Type (Get)

This property returns the type of alias, depending upon whether the alias is an abbreviation, acronym, or something else.
Type (Put)

This property sets the type of alias, depending upon whether the alias is an abbreviation, acronym, or something else.
Word (Get)

This property returns a word that can be expanded. For example, "IC" can be expanded to "Interaction Center".

Word (Put)

This property assigns a word that can be expanded.

Note:
l The word of an Alias cannot be changed once the Alias has been added to a FAQ.

lAliases Interface

This interface represents a collection of alias objects. You can return the count of items in the collection, retrieve an alias by specifying
its index, add items, remove items, and enumerate the collection.

Methods

Add

This method adds an alias object to the collection.

Item

This method returns the Alias object specified by its index within the collection.

Remove

This method removes an alias from a collection of alias objects. To specify which item is removed, the function is passed an
index number (1-based), or the string value of the alias itself.

Properties

Count (Get)

This read-only property returns the number of elements in a collection of alias objects.

_NewEnum (Get)

This property returns an IEnumVARIANT instance.
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IAliases?2 Interface

This interface extends the |Aliases interface to add methods for searching and refreshing the list of aliases from the server.

Methods

Find

The Find method searches the Alias object given its Aliasld. If a match is found, an |Alias object is returned. NULL is returned if
no match is found.

Refresh

The Refresh method refreshes the list of Aliases from the server.

IAsyncError Interface

This interface supports an asynchronous operation error object that contains error information about a failed asynchronous operation.

Properties

Code (Get)

This read-only property returns the error code number.
Description (Get)
The Description property returns the descriptive text of the error that occurred.

NativeObject (Get)

This method returns a potential error object, or NULL if none is available.
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IAsyncOperation Interface

This Interface supports an object that represents a currently running or completed asynchronous operation.

Methods

Abort

This method requests an abort of the asynchronous operation. It raises an error if an operation cannot be aborted.

Properties

CanAbort (Get)
This property returns True if an asynchronous operation can be aborted.

Completed (Get)

This property returns True if the asynchronous operation completed, irrespective of whether it completed successfully, was
aborted, or was erroneous.

Error (Get)

This property returns an IAsyncError object that represents the error that occurred in the asynchronous operation. NULL is
returned if there was no error.

HasProgressinfo (Get)
This property is True if this asynchronous operation can provide progress information.

HasResult (Get)

This property is True if the operation will provide a result. The resulting data can be obtained using the Result property, but only
after the operation completed.

Owner (Get)
This property returns the object on which the asynchronous operation is being performed on.
Progress (Get)
This property returns the current progress value.
ProgressFirst (Get)
This property returns the lower bound of the progress range or start value.
ProgressLast (Get)
This property returns the upper bound of the progress range or end value.
Result (Get)

This property returns the result data from the asynchronous operation, if data is available.

Status (Get)

This property returns the status of the operation.

20



IBooleanQueryConfig Interface

This interface provides properties that affect search parameters.

Properties

Caselnsensitive (Get)

This property indicates whether word searches are case insensitive.

Caselnsensitive (Put)

When the Caselnsensitive property is True, words are case insensitive. This is particularly useful when locating acronyms.

HitStems (Get)

If True, hit words or their stems.

HitStems (Put)

If True, hit words or their stems.
HitSynonyms (Get)

If True, hit words or their synonyms.
HitSynonyms (Put)

If True, hit words or their synonyms.

SearchAnswer (Get)

If True, search Answer field of Entries.

SearchAnswer (Put)

If True, search Answer field of Entries.

SearchKeywords (Get)

If True, search Keywords defined for Entries.

SearchKeywords (Put)

If True, search Keywords defined for Entries.

SearchQuestion (Get)

If True, search Question field of Entries.

SearchQuestion (Put)

If True, search Question field of Entries.

IDeletedEntryData Interface

Interface of an object that contains the data of a logically-deleted entry.

Methods

CreateNewEntry

The CreateNewEntry method creates a new Entry and populates it with all the data (except Entryld) in this Entry.

Properties

ActivationDate (Get)

The ActivationDate property returns the date and time (in UTC format) when this Entry is activated, or NULL if there is no
activation date.
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AnswerPlain (Get)

The AnswerPlain property returns the Answer in plain text, with all tags removed.
AnswerXML (Get)

The AnswerXML property returns the Answer text in XML format.
Attributes (Get)

Collection of collection of attributes of this Entry
Author (Get)

The Author property returns the name of the person who authored this Entry.
AuthorEMail (Get)

The AuthorEmail property returns the email address of the author of this Entry.
Created (Get)

The Created property returns the date and time when this Entry was created, in UTC format.
Entryld (Get)

The EntryID property returns the Entry Id of this entry.
ExpirationDate (Get)

The ExpirationDate property returns the date and time when entry is deactivated, in UTC format. A NULL value is returned if there
is no expiration date.

FAQ (Get)
The FAQ property returns the IFAQ object that owns this Entry.
IsActive (Get)

Returns True if Entry is active.

Note:
As the entry is logically deleted, "Active" here means just that the flag is set and if the entry were to be undeleted, it would
become active.

Keywords (Get)

The keywords property returns a collection of keywords of this Entry.
LastModified (Get)

The LastModified property returns the date and time when this Entry was last changed, in UTC format.
NotifyAddresses (Get)

The NotifyAddresses property returns a collection of e-mail addresses to be notified when this entry is a hit.
QuestionPlain (Get)

The QuestionPlain property returns the Question in plain text format, with all tags removed.
QuestionXML (Get)

The QuestionXML property returns the Question text in XML format.
UselnResponse (Get)

The UselnResponse property is True if this Entry should be included when generating a response.
UserData (Get)

The UserData property returns user-defined data associated with this Entry. An e-FAQ user is someone who sends queries to a
response mailbox.

Version (Get)

The Version property returns the version number of the Entry. This number is incremented each time the Entry is changed.)
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IDeletedFAQData Interface

Interface of an object that contains the configuration data of a logically deleted FAQ.

Properties

Created (Get)
The FaqID property returns the UTC date and time when this FAQ was created.

Description (Get)

Description text of FAQ.
EMailAuthoring (Get)

Allow/disallow e-mail based authoring of entries in this FAQ.
EntryAttributes (Get)

The EntryAttributes property returns a collection of IEntryAttributes for this FAQ.
Faqgld (Get)

The Faqld property returns the name of the FAQ.
Killwords (Get)

Collection of killwords of this FAQ.
Languageld (Get)

The LanguagelD property returns a numeric langauage code that identifies the language for this FAQ. Currently, only 1033 (English
US) and 0 (language neutral) are supported.

LastModified (Get)

The date and time when this FAQ configuration was last changed (in UTC).
Name (Get)

Name of the FAQ
Password (Get)

Password of the FAQ for e-mail authoring
Server (Get)

The Server property returns the server object that owns this FAQ.
TokenizeNumbers (Get)

The TokenizeNumbers property indicates whether tokenization of numbers in entries of this FAQ is enabled or disabled.
UserData (Get)

The UserData property returns user-defined data in XML format.

WebConfigData (Get)

This property returns XML configuration data used by web applications, such as the e-FAQ Knowledge Manager.
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IEntries Interface

This interface manipulates a collection of entry objects. You can return the number of attributes in the collection, retrieve or remove
individual entries in the collection.

Methods

Add

This method adds an entry object to a collection of entry objects in the FAQ. The entry will be sent to the server to add to this
FAQ. This operation may take a few seconds.

Item
The Item method returns the entry object found at the given 1-based index of a collection, or based upon the string value of the
entry itself.

Remove
This method logically deletes an entry. To specify which Entry to remove, pass the a 1-based index number, the identifier of the
entry as a string, or an |Entry object.

Properties

Count (Get)

This read-only property returns the number of elements in a collection of entry objects.
_NewEnum (Get)

This property returns an IEnumVARIANT interface so that you can enumerate instances of entry values.

IEntries2 Interface

This interface refines the IEntries interface and adds various new methods.

Methods

Refresh

This method performs a shallow refresh of the list of Entries. A shallow refresh means that just the list is refreshed. The entries
in the list are not refreshed or invalidated. Use the IEntry::Revert method to force a refresh of the individual entries.

RemoveEx

This method removes the Entry from the server. You can specify whether to immediately purge the Entry. Please refer to the
IEntries::Remove method for more information.

IEntry Interface

This interface allows you to manipulate data items associated with an entry object.

Methods

ApplyChanges
This method sends local changes made to entry data to the e-FAQ server. This method fails if the entry data is not actually dirty.
Clone

This method creates a new entry object that has the same data as the current entry. The new object will get a new Entry ID. The
new entry is not attached to a FAQ.

LogAsUsed

This method logs a use of this entry for reporting purposes. Optionally, LogAsUsed accepts QueryResultSet, QueryResult (both
IDispatch), or Queryld (VT_l4) as argument to associate entry usage with a query.
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Revert

This method fetches stored data from the server, discarding any local changes that you might have made to the entry object.

Properties

AnswerPlain (Get)

The AnswerPlain property returns the answer to a FAQ in plain text format. All tags are stripped, entities are substituted and
<BR/> tags are converted to newlines (\n).

AnswerPlain (Put)

The AnswerPlain property assigns plain text to the answer to a FAQ.
AnswerXML (Get)

This property returns the answer to a FAQ in XML format.
AnswerXML (Put)

This property assigns an XML-formatted string to the answer to a FAQ.

Attribute (Get)

This property allows you to read the attribute of an entry. An attribute is a tag that denotes an entry as belonging to a subset of
entries.

Attribute (Put)

This property writes the attribute of an entry.
Author (Get)

This property returns the name of the person (author) who created this entry.
Author (Put)

This property assigns the name of the person who created the entry.
AuthorEMail (Get)

This property returns the email address of the author of an e-FAQ entry.
AuthorEMail (Put)

This property assigns the email address of an author to an e-FAQ entry.
Created (Get)

This property returns the date and time when an entry was first added to the FAQ.
Created (Put)

You can assign a value to this property if the entry is a new entry (not yet attached to a FAQ). You should only set the Created
time when you also set an Entryld; for example, to copy entries from one server to another.

Entryld (Get)
This property returns the Entry ID of an entry.
Entryld (Put)

This property assigns as string value to the Entry ID. You can assign a value only if the entry is a new entry, and the entry is not yet
attached to a FAQ.

FAQ (Get)

This read-only property returns a FAQ object of the FAQ that owns this entry. NULL is returned if the entry is new and has not been
added to a FAQ).

IsActive (Get)

You can use the IsActive property to determine whether this Entry is active or inactive.

IsActive (Put)
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You can use the IsActive property to determine whether this Entry is active or inactive.

IsDirty (Get)

This read-only property is True if the entry has been modified locally and changes have not been sent to the server yet (using the
IEntry::ApplyChanges method).

IsNewEntry (Get)

This read-only property returns True if the entry is a new (or cloned) entry object that has not yet been added to a FAQ.

Keywords (Get)

This property allows you to access the collection of keywords for the entry.

Keywords (Put)

This property allows you to modify the collection of keywords for the entry.
LastModified (Get)

This read-only property returns the time when the entry was last modified.

NotifyAddresses (Get)

This property allows you to access a collection of email addresses to notify when entry is hit in an email query.
NotifyAddresses (Put)
This property allows you to modify a collection of email addresses to notify when entry is hit in an email query.

QuestionPlain (Get)

The QuestionPlain property returns the question from a FAQ in plain text format. Tags are stripped, entities are substituted and
<BR/> tags are converted to newlines (\n).

QuestionPlain (Put)

The QuestionPlain property assigns a question (in plain text format) to a FAQ.
QuestionXML (Get)

This property returns a question in XML format.
QuestionXML (Put)

This property allows you to assign XML-formatted text to a question.

Server (Get)

This read-only property returns the server object which the Entry belongs to, or NULL if the entry is not a member of a FAQ.
UselnResponse (Get)

This property indicates whether the entry will be included in a response email message.
UselnResponse (Put)

This property determines whether the entry will be included in a response email message.

UserData (Get)

The UserData of an Entry can be used to store any user defined data with the entry. This data is not interpreted by e-FAQ and is
just stored with the entry. This data can be up to 1024 characters long and must constitute well-formed XML.

UserData (Put)

The UserData that you assign to an Entry must be in XML format. Your XML statements can be up to 1024 characters in length.
You don't have to specify a root element, since e-FAQ implies <USERDATA> your data </USERDATA>.

Version (Get)

This property returns the version number of the entry. Version numbers are incremented each time that an entry is modified. If this
value is 1, the entry has not been modified since it was created.

Version (Put)
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If the entry object is new (has not been attached to a FAQ) you can assign a value to this property. This may be used to restore
backups, etc.

IEntry2 Interface

This interface refines the IEntry interface and adds various new methods to support new features such as feedback, activation/expiration
dates, and locking.

Methods

CopyFrom

The CopyFrom method copies data from the specified entry, to this entry. Only the fields that can be written are copied.

Note:
Feedback is not copied!

Lock

This method locks the entry on the Server to prevent changes by other clients while the entry is being changed. If the lock
succeeds, the current state of the entry is retrieved from the server to ensure the client holds the most current data.

Unlock

This method unlocks the entry if it is locked. An exception is thrown if the entry is not locked by this client.

Properties

ActivationDate (Get)

The ActivationDate property returns the UTC date and time when the entry is activated, or NULL if the entry does not have an
activation date. See also the IEntry::IsActive property.

ActivationDate (Put)

Sets the UTC date and time when entry is activated (NULL: no activation date). Please refer to the IEntry::IsActive property for
more details.

Attributes (Get)
The Attributes property returns a collection of attributes of this Entry.

Attributes (Put)

Assigns the contents of a collection of attributes to the attributes collection of this entry. The attributes are identified by name
and it is thus not necessary that the source collection is from an entry of the same FAQ.

ExpirationDate (Get)

The ExpirationDate property returns the UTC date and time when the entry will be deactivated. If NULL, the entry has no expiration
date and thus never expires. Please refer to the IEntry::IsActive property for details.

ExpirationDate (Put)

Assigns the date and time (in UTC format) when this entry will be deactivated. If you set the date and time to NULL, the entry
won't have an expiration date and will never expire. Please refer to the IEntry::IsActive property for details.

Feedback (Get)

The Feedback property returns a collection of feedback items of this Entry.

IsLocked (Get)
The IsLocked property indicates whether this entry is locked by this client.
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IEntryAttribute Interface

This interface allows you to manipulate data items associated with an entry attribute, such as the attribute name, attribute ID, and the FAQ
that owns the attribute.

Properties

Attributeld (Get)

This property returns the attribute's identifier, or -1 if the attribute is not attached to a FAQ.
FAQ (Get)

This property returns the FAQ object that owns the attribute. If the attribute is not owned by a FAQ, NULL is returned.
Name (Get)

This property returns the name of the attribute.

Name (Put)

You can also change the name of an attribute.

IEntryAttributes Interface

The IEntryAttributes interface manipulates collections of Entry attribute objects. You can return the number of attributes in the collection,
retrieve the attribute at a given index, add or remove attributes from the collection.

Methods

Add

This method adds an entry attribute to the collection. The attribute can be specified by name or passed as an object to the
collection. An IEntryAttribute object is returned.

Clear
The Clear method removes all attributes from a collection.

Item
The Iltem method returns the entry attribute at the given 1-based index of a collection. The attribute can optionally be specified by
name.

Remove
This method removes an attribute from a collection of entry attributes. To specify which item is removed, the function is passed
an index number (1-based), the string value of the attribute, or an object.

Properties

Count (Get)

This read-only property returns the number of elements in a collection of entry attribute objects.

_NewEnum (Get)

This property returns an IEnumVARIANT interface so that you can enumerate instances of entry attribute values.
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IEntryFeedback Interface

This interface refines the IEntry interface and adds various new methods to support new features such as feedback, activation/expiration
dates, and locking.

Methods

Add

The Add method adds a new feedback item to the Entry. The feedback item must be created through
IServer2::CreateNewEntryFeedbackltem method and initialized before adding to the entry.

Clear
The Clear method removes all feedback items from the Entry.
Find
The Find method retrieves the feedback item with the given identifier. Null is returned if the item is not found.

Item

This method retrieves the feedback item at the specified index (1 based). If the specified index is out of range, an exception is
thrown.

Refresh

Refreshes the list of Feedback items from the Server

Remove

The Remove method removes a feedback item from the Entry (undoes the feedback). To specify which item to remove, specify its
index number or pass the feedback object to this function.

Properties

Count (Get)

The Count property returns the total number of feedback items in the collection.
_NewEnum (Get)

This property returns an IEnumVARIANT interface so that you can enumerate items in a collection of feedback items.

IEntryFeedbackltem Interface

An interface of objects containing confidence and alternate wording feedback for an Entry.

Methods

ApplyChanges
The ApplyChanges method send changes made locally to the Feedback item to the e-FAQ Server.

Clone

The Clone method creates a new Entry Feedback Item with the same data as this one. The new feedback item is not added to an
Entry yet.

Revert

The Revert method fetches current data from the server, discarding any local changes to this object.

Properties

AlternateWording (Get)

This property returns alternate question wording for this Entry as plain text (not XML).
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AlternateWording (Put)

The AlternateWording property can be used to assign alternate question wording for this Entry. Your copy must be supplied as
plain text, rather than XML.

Author (Get)

The Author property returns the name of the author of the feedback item.
Author (Put)

The Author property assigns a new name as the author of the feedback item.
Comment (Get)

The Comment property returns a custom comment stored with the feedback.
Comment (Put)

The Comment property can be used to change a custom comment stored with feedback.
Created (Get)

The Created property returns the UTC date and time when the feedback item was created.
Created (Put)

The Created property changes the creation date and creation time entry for this feedback item.
Entry (Get)

The Entry property returns the Entry which owns this feedback item.
ExpandSynonyms (Get)

The ExpandSynonyms property indicates whether to expand the synonyms of words in the alternate wording.
ExpandSynonyms (Put)

The ExpandSynonyms property determines whether to expand the synonyms of words in the alternate wording. This property
cannot be changed if feedback is attached to the entry.

Feedbackld (Get)

The Feedbackld property return a long number that identifies this feedback item.
IsDirty (Get)

The IsDirty property returns True if this Feedback item has been changed locally.

IsNewltem (Get)

The IsNewltem property indicates whether this Feedback item has been added to an Entry. True is returned if the item is new and
has not been added to an Entry.

LastModified (Get)

The LastModified property returns the date and time when this feedback item was last modified. The date is returned in UTC
format.

StrengthMeasure (Get)

The StrengthMeasure property returns the positive or negative strength measure that was applied to this feedback item. The value
range depends on the type of feedback (alternate wording or entry confidence).

StrengthMeasure (Put)

You can assign positive or negative strength measure to this feedback item. The range of acceptable values depends on the type
of feedback (alternate wording or entry confidence).
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IEntryRecycleBin Interface

IEntryRecycleBin objects are collections of entries that have been logically deleted from a FAQ.

Methods

GetEntryData

The GetEntryData method returns the data of the logically deleted Entry. The returned object only provides access to a limited part
of the data.

GetEntrylds
The GetEntrylds method returns a list of EntrylDs of the Entries that are logically deleted.
IsDeleted
The IsDeleted method returns True if the FAQ has an Entry with the given ID that has been logically deleted.
Purge
The Purge method physically deletes the specified Entry, if it has been marked as deleted.
Undelete

The Undelete method un-deletes the Entry with the given ID, if it has been logically deleted but is physically still in the database.

IFAQ Interface

This interface allows you to manipulate objects representing a FAQ.

Methods

ApplyChanges

This method sends changes made to the FAQ to the e-FAQ server. The method returns True if the FAQ needs to be reindexed. This
method fails if the data of the FAQ has not changed. See also IFAQ::IsDirty.

Clone

This method creates a new FAQ object and initializes the new FAQ with the same data as the object cloned. Entries and Aliases
are not copied. Killwords and EntryAttributes are copied. The clone object is not attached to an e-FAQ server.

GetEntry

This method retrieves an entry object by specifying its Entry ID. The EntrylD must belong to an entry in this FAQ. NULL is returned
if the entry object is not found.

Reindex

Re-indexes the FAQ.

Warning!
Takes potentially very long time! Consider using ReindexAsync.

ReindexAsync
This method reindexes a FAQ asynchronously. The FAQ remains available while indexing takes place.
Revert

This method abandons local changes made to a FAQ configuration and fetches current data from the server. Local changes are
discarded.

Properties

Aliases (Get)

This read-only property returns a collection of aliases of this FAQ.
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Created (Get)
This property returns the date and time when the FAQ was added to the e-FAQ server.

Created (Put)
If the object is a new FAQ, you can assign the date and time to this property.
Description (Get)
This property returns comment text stored with the FAQ.
Description (Put)
This property allows you to set descriptive text stored with the FAQ.
EMailAuthoring (Get)
This boolean property indicates whether e-mail based authoring of entries in this FAQ is allowed or disallowed.
EMailAuthoring (Put)
This boolean property allows you to allow or disallow e-mail based authoring of entries in this FAQ.
Entries (Get)
This read-only property returns a collection of entries in the FAQ.
EntryAttributes (Get)
This property returns a collection of entry attributes defined for this FAQ.
EntryAttributes (Put)
This property assigns a collection of entry attributes defined for this FAQ.
Faqld (Get)
This read-only property returns the numeric FAQ ID (database row id).
IsDirty (Get)

The IsDirty property is True if a FAQ configuration has been changed locally, and changes have not been applied to the server yet.
Adding or removing entries does not change the FAQ configuration and thus does not mark a FAQ as dirty.

IsNewFAQ (Get)

This read-only property is True if the FAQ is a new FAQ object that has not yet been added to a Server.
Killwords (Get)

This property allows you to read the collection of killwords of this FAQ.
Killwords (Put)

This property allows you to copy the killword collection of one FAQ to another FAQ.
LastModified (Get)

This read-only property returns the date and time when the FAQ configuration was last changed.
Name (Get)

This property returns the name of this FAQ.
Name (Put)

If the object is a new FAQ, you can assign the name of this FAQ.

NeedsReindexing (Get)

This property returns True if changes to the FAQ configuration require the FAQ to be re-indexed. This property directly queries the
current state of the FAQ on the server and does not use cached information.

Password (Get)

This property reads the password of the FAQ for e-mail authoring.

Password (Put)
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This property writes the password of the FAQ for e-mail authoring.
Server (Get)

The Server property returns the server object of the FAQ, or NULL if the object is not yet a member of a server.
TokenizeNumbers (Get)

This property allows you to enable or disable tokenization of numbers in entries of the current FAQ.
TokenizeNumbers (Put)

This property indicates whether tokenization of numbers in entries of the current FAQ is enabled or disabled.
UserData (Get)

This property returns a user-defined string stored with the FAQ. The data must be well formed XML.

UserData (Put)

This generic property allows you to store up to 1024 characters of user defined data with this FAQ. The data must constitute well
formed XML. You don't have to specify a root element, since e-FAQ implies <USERDATA> your data </USERDATA>.

IFAQ2 Interface

Collection of logically deleted entries.

Methods

Lock

Locks the FAQ on the Server to prevent changes to the FAQ configuration from other clients. If the lock succeeds, the current
state of the FAQ configuration is retrieved from the server to ensure the client holds the most current data.

Unlock
The Unlock method unlocks the FAQ if it is locked. If the FAQ is not locked by this client, an exception is thrown.

Properties

EntryRecycleBin (Get)

The EntryRecycleBin property returns an IEntryRecycleBin object that provides access to logically deleted Entries.

IsLocked (Get)
The IsLocked property indicates whether the FAQ is locked by this client.

Languageld (Get)

The Languageld property returns a number that indicates the language used in the FAQ. Currently, only two codes are supported:
1033 (English US) and 0 (language neutral).

Languageld (Put)

You can assign a language to the FAQ by passing a numeric language code. Currently, only two codes are supported: 1033
(English US) and 0 (language neutral).

WebConfigData (Get)

The WebConfigData property returns web configuration in XML format for web applications such as the e-FAQ Knowledge
Manager.

WebConfigData (Put)

You can update the configuration data used by web applications (such as the e-FAQ Knowledge Manager) by passing well-formed
XML to this function.
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IFAQRecycleBin Interface

This interface creates an object that is a collection of logically deleted FAQ entries.

Methods

GetFAQData

The GetFAQData method returns the data of the logically deleted FAQ. The returned object only provides access to a limited part
of the FAQ data.

GetFAQNames

The GetFAQNames method returns a list of names of the FAQs that are logically deleted.

IsDeleted

The IsDeleted method returns True if a FAQ with the given name has been logically deleted.

Purge
The Purge method physically deletes the given FAQ, if it has been marked as deleted.

Undelete

This method un-deletes the FAQ with the given name, if it has been logically deleted but is physically still in the database.
IFaqReindexCompletionCallback Interface

IFagReindexCompletionCallback is a callback interface that is called when FAQ indexing is completed.

Methods

IndexingCompleted

This method is called during re-indexing of a FAQ to report progress.
IFaqReindexProgressCallback Interface
IFagReindexProgressCallback is a callback interface called during re-indexing of a FAQ to report progress.

Methods

IndexingCheckPoint

This method is called during re-indexing of a FAQ to report progress.




IFAQs Interface

This interface provides access to collections of FAQs (frequently asked questions.)

Methods

Add
This method adds a FAQ to the e-FAQ Server.

Item

This method returns the IFAQ object found at the given 1-based index of a collection, or based upon the name of the entry itself.

Remove

This method logically deletes a FAQ. To specify which FAQ to remove, pass the a 1-based index number, the name of the FAQ as a
string, or an IFAQ object.

Properties

Count (Get)

This read-only property returns the number of FAQs in a collection of FAQ objects.

_NewEnum (Get)

This property returns an IEnumVARIANT interface so that you can enumerate instances of FAQ values.

IFAQs2 Interface

This interface refines the IFAQs interface and adds various new methods.

Methods

Refresh

Performs a shallow refresh of the list of FAQs. A shallow refresh here means that just the list is refreshed. The FAQs in the list
are not refreshed or invalidated. Use the IFAQ::Revert method to force a refresh of the individual entries.

RemoveEx

The RemoveEx method removes the FAQ from the server. The bPurgeNow parameter allows you to specify whether to
immediately purge the FAQ. Please refer to the IFAQs::Remove method for more information.

IKeyword Interface

The objects created using this interface represent keywords. You can control whether keywords are expanded, whether synonyms are
added, whether Parts of Speech (POS) are written, and whether root keywords are indexed.

Properties

Adjective (Get)

The Keyword is an adjective when this property is True.
Adjective (Put)

To indicate that the keyword is an adjective, set this property to True.
Adverb (Get)

The Keyword is an adverb when this property is True.

Adverb (Put)

To indicate that the keyword is an adverb, set this property to True.
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ExpandAliases (Get)

This property determines whether a keyword will be expanded against its aliases. The keyword is expanded when ExpandAliases
is True.

ExpandAliases (Put)

Set this property True to expand the keyword against its aliases.
ExpandSynonyms (Get)

Set this property True to add synonyms of the keyword to the keyword index.
ExpandSynonyms (Put)

This property indicates whether synonyms of the keyword will be added to the keyword index. Synonyms are added when when
ExpandSynonyms is True.

GuaranteedHit (Get)

When this property is True, the entry will be chosen, irrespective of grade, if a keyword is found.

GuaranteedHit (Put)

To force an entry to be chosen if a keyword if found, irrespective of grade, set this property to True.
Noun (Get)

The Keyword is a noun when this property is True.
Noun (Put)

To indicate that the keyword is a noun, set this property to True.

Stem (Get)
If this property is True, the root of the keyword will be added to the index.

Stem (Put)
To add the root of the keyword to the index, set this property True.

Verb (Get)

The Keyword is a verb when this property is True.
Verb (Put)
To indicate that the keyword is a verb, set this property to True.

Word (Get)

This read-only property returns the keyword that the object represents. Note that the word of a keyword cannot be changed. You
have to delete the keyword and add a new one.
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IKeywords Interface
The IKeywords interface allows developers to manipulate collections of keywords of an entry.

Methods

Add

This method adds a keyword to the entry and returns a keyword object.

Clear
This method removes all keywords from the entry.

Iltem
This method returns a keyword object from the collection. To return a specific item, you can specify a 1-based index number, or
the name of the object as a string value.

Remove
This method removes a keyword from the entry. To specify the item to remove, pass the function a 1-based index, a string value
that identifies the item, or a keyword object.

Properties

Count (Get)

This read-only property returns the number of keywords in the collection.
_NewEnum (Get)

This property returns an IEnumVARIANT interface so that you can enumerate instances of entries in the collection.

IKillwords Interface

This interface manipulates a collection of killwords of a FAQ. KillWords are words (strings) that e-FAQ ignores when searching for an
answer.

Methods

Add
This method adds a killword to the FAQ.

Clear
This method removes all killwords from the FAQ.
Iltem
This method returns the killword found at the given 1-based index of a collection.
Remove
This method removes a killword from the FAQs. To specify the item to remove, pass the function a 1-based index, or the killword
text as a string value.
Properties

Count (Get)

This read-only property returns the number of words in a collection of killwords.

_NewEnum (Get)

This property returns an IEnumVARIANT interface so that you can enumerate instances of killwords in a collection.
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ILockInfo Interface

Interface of objects representing information about a FAQ or Entry locking operation.

Properties

CurrentOwner (Get)

The CurrentOwner property returns an object containing information about the current owner of a lock.

Failed (Get)

The Failed property returns True if acquiring the lock failed (e.g. the lock not forced and somebody else holds a lock on the same
resource).

LockForced (Get)
The LockForced property is True if the lock was acquired by forcing it from another owner.

PreviousOwner (Get)

The PreviousOwner property returns an ILockOwnerInfo object containing information about the previous owner of the lock (if
lock was forced).

Succeeded (Get)

The Succeeded property is True if a lock was successfully acquired.

ILockOwnerinfo Interface

The objects you create using this interface provide information about the owner of a FAQ or Entry lock.

Properties

Clientld (Get)
The Clientld property returns the Client Identifier of the owner of the lock.

LockMessage (Get)

The LockMessage property returns the message passed to the Lock method by the owner of the lock.
Sessionld (Get)

The Sessionld property returns the Session Identifier of the owner of the lock.

Timestamp (Get)

The Timestamp property returns the time when a lock had been obtained. The time is returned in UTC format.
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INotifyAddresses Interface

The INotifyAddresses interface allows developers to maintain collections of e-mail addresses that e-FAQ notifies when an entry is used
as a response. This can be used to notify authors that an entry has been used.

Methods

Add

This method adds an e-mail address to the collection.

Clear
This method removes all e-mail addresses from the collection.
Iltem
This method returns the e-mail address found at the given 1-based index of a collection.
Remove
This method removes an e-mail address from the collection. To specify the item to remove, pass the function a 1-based index, or
the e-mail address as a string value.
Properties

Count (Get)

This read-only property returns the number of e-mail addresses in a collection.

_NewEnum (Get)

This property returns an IEnumVARIANT interface so that you can enumerate instances of e-mail addresses in the collection.

IQuery Interface

This interface defines and executes a FAQ query. It exposes properties that affect execution and logging operations, and can duplicate
query objects.

Methods

Clone

This method clones (copies) the current object, for reuse in another query.
Execute

This method executes a query object on the server. It returns a QueryResultSet object.

Properties

AbsThreshold (Get)

This property returns the absolute score threshold. Entries with an absolute score below this value are not considered. The
absolute score of an entry can be between 0.0 to 1.0.

AbsThreshold (Put)

This property returns the absolute score threshold. Entries with an absolute score below this value are not considered. The
absolute score of an entry can be between 0.0 to 1.0. The absolute scores of all entries is used to calculate the Grade.

AnswerWordWeight (Get)

This property returns the relative weight given to words in answer text compared to words in question text of the FAQ entries.
Values must be in the range 0.0 to 1.0. The default = 0.7.

AnswerWordWeight (Put)

39



This property assigns the relative weight given to words in answer text compared to words in question text of the FAQ entries.
Values must be in the range 0.0 to 1.0. The default = 0.7.

CacheResultEntries (Get)

This property determines whether entries selected by the query are cached on the client. When this property is True, all entries
chosen by the query are cached to reduce server round trips.

CacheResultEntries (Put)
To reduce server round trips, by caching all entries chosen by the query, set this property True.

LogQuery (Get)

This property indicates whether a query is logged for reporting purposes. The default value is True, indicating that the query will be
logged for reporting.

LogQuery (Put)

Set this property True to specify that the result of the query is logged for reporting purposes.
LogResultAsUsed (Get)

This property indicates whether e-FAQ automatically logs entries in the result-set as used, in order to avoid server round trip.
LogResultAsUsed (Put)

When this property is True, e-FAQ automatically logs entries in the result-set as used. This avoids server round trip.
MaxHits (Get)

The property returns the maximum number of answers in the result-set.
MaxHits (Put)

The property sets the maximum number of answers in the result-set. The default is 5.
MinGrade (Get)

This property returns the minimum grade threshold, which is a number between 1.0 and 10.0. The default value is 2.0.
MinGrade (Put)

This property assigns the minimum grade threshold, which is a number between 1.0 and 10.0. The default value is 2.0.

POSTagQuestion (Get)

When True, this property indicates that Part of Speech tagging is applied to the question text. This will slow down queries, but the
result will be better.

POSTagQuestion (Put)

To apply Part of Speech tagging to the question text, set POSTagQuestion True. Enabling parts of speech tagging will slow down
the query slightly, but will increase the match quality.

QueryFAQs (Get)
This property returns a collection of FAQs to be queried.

QueryFAQs (Put)

This property assigns a collection of FAQ names to be queried. Use this to copy the FAQs to be queried from one query object to
another.

Question (Get)
This property contains the question text that will be asked.
Question (Put)

This property assigns the question text that will be processed.

Requestld (Get)

This property contains a string representing the custom request identifier to be logged into the remote query table for reporting
purposes.

Requestld (Put)
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This property assigns a string representing the custom request identifier to be logged into a remote query table for reporting
purposes.

Server (Get)

This property returns a server object that the query will be run against.

IQuery?2 Interface

This interface refines the IQuery interface and adds various methods and properties to support additional query features, such as Boolean
expression queries, XML result queries, etc.

Methods

ExecuteToXML
The ExecuteToXML method executes the query and returns the query result as an XML document.

GetProperty

The GetProperty method retrieves the value of a named query property. Properties allow you to pass additional information to the
server, such as hints for the matcher engine, without necessitating changes to the interface.

SetProperty

The SetProperty method sets the value of a named query property. Properties allow passing additional information to the server,
such as hints for the matcher engine, without necessitating changes to the interface.

Properties

BooleanQueryConfig (Get)

The BookeanQueryConfig property returns an IBooleanQueryConfig object representing configuration data for boolean expression
queries.

BooleanQueryConfig (Put)
Assigns the data of a boolean query configuration object to this query configuration object.

LogQueryResult (Get)

When the LogQueryResult property is True, the result of the query will be logged for reporting. When this property is False, only the
query itself is logged, but not the actual result of the query.

LogQueryResult (Put)

You can use the LogQueryResult property to specify whether to log the result of the query for reporting. When this property is
False, the query is logged, but not the actual result of the query. This saves space in the query log. The default is True.

Mode (Get)

The Mode property returns the mode of the query. Please see put_Mode for details.

Mode (Put)

You can also use the Mode property to set the desired mode of the query.

41



IQueryFAQ Interface

This interface provides an object representing a FAQ that will be queried during execution of a query.

Properties

EntryAttributes (Get)
This property returns a collection of entry attributes that qualifies which entries of this FAQ are to be considered in the query.
EntryAttributes (Put)
You can also assign a collection of entry attributes to qualify a query with.
FAQ (Get)
This property returns the FAQ that this object represents.
Query (Get)

This property returns the IQuery object that owns this object.

IQueryFAQs Interface

The IQueryFAQs interface provides a collection of objects representing FAQs to be queried in a query.

Methods

Add

This method adds a FAQ to the collection. You must pass the name of the FAQ or an IFAQ object as parameters. An IQueryFAQ
object is returned.

Clear
This method removes all FAQs from the collection.
Item

This method returns an IQueryFAQ object. You can pass this method a 1-based index number, the name of the FAQ, or an IFAQ
object.

Remove

This method removes an FAQ from the collection. To specify the item to remove, pass the method a 1-based index number, the
FAQ name as a string, an IFAQ object, or an IQueryFAQ.

Properties

Count (Get)

This read-only property returns the number of FAQ names in a collection.

_NewEnum (Get)

This property returns an IEnumVARIANT interface so that you can enumerate instances of FAQ names in the collection.
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IQueryResult Interface

The IQueryResult interface provides statistics about an Entry selected as the result of a query. A query result object represents one row in
the result set.

Methods

LogAsUsed

The LogAsUsed method logs a use of the result entry for reporting purposes. Please refer to IEntry::LogAsUsed for a discussion
of this feature.

Properties

AbsoluteScore (Get)

This property returns the absolute score of the entry.
Entry (Get)

This property returns the entry object associated with the query result.
Entryld (Get)

This property returns the identifier (entry ID) of the query result. This is more efficient than using IEntry::Entryld, since the Entry
potentially has to be fetched from the server. IQueryResult::EntrylD is useful when only the entry ID is needed.

Grade (Get)

This read-only property returns the grade of the entry in this query result.
GuaranteedHit (Get)

True if result is because a 'GuaranteedHit' keyword appeared in the question.
Mean (Get)

This read-only property returns the mean absolute score of the entry in the query result.
QueryResultSet (Get)

This read-only property returns the query result set that the object is a member of, as an IQueryResultSet object.

StdDev (Get)

This read-only property returns the standard deviation of the absolute scores in the query result.

IQueryResults Interface

The IQueryResults interface allows you to enumerate a collection of query result objects, to obtain the total number of item in the
collection, and to retrieve an individual item.

Methods

Item

This method returns a query result object from the collection. To return a specific item, you can specify a 1-based index number,
or the Entryld of one of the entries in the result set.

Properties

Count (Get)
This read-only property returns the number of query result objects contained in the collection.
_NewEnum (Get)

This property returns an IEnumVARIANT interface so that you can enumerate instances of query result objects in a collection.
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IQueryResultSet Interface

The IQueryResultSet interface provides access to query result set objects.

Methods

CacheEntries

The CacheEntries method ensures that all entries appearing in the result set are cached locally on the client. A single request will
be sent to the server to fetch all entries that are not yet present on the client.

LogAsUsed

The LogAsUsed method instructs the server to log all entries in this result set as used by this query (for reporting purposes). See
IEntry::LogAsUsed for details.

Properties

Query (Get)
This read-only property returns the query object used to generate this result set.
Queryld (Get)

This read-only property returns the row id of the IEFAQ_L_Queries table, or -1 if the query was not logged (Query.LogQuery =
False). See also: IQuery::LogQuery property.

QueryResults (Get)

This property returns a collection of query result elements. Elements in collection are ordered by grade in descending order
(highest grade first).

Server (Get)

This property returns a server object representing the server that the query ran against.




IServer Interface

IServer is the root object for accessing the e-FAQ server. Use the IServer interface to connect to an e-FAQ server, or to determine whether
a connection to the server exists.

Methods

Connect

The Connect method establishes a connection with an e-FAQ server. The e-FAQ server name, and client identifier must be passed as
arguments.

CreateNewAlias

The CreateNewAlias method creates a new alias object, which you can later add to a FAQ by using the IAliases::Add method.
CreateNewEntry

CreateNewEntry creates an empty entry object, which can be added to a FAQ collection using the FAQ.Entries.Add method.
CreateNewFAQ

The CreateNewFAQ method creates an empty FAQ object. To add this new object to the server, use the IFAQs::Add method.
CreateQuery

The CreateQuery method creates a new query object.
GetEntry

The method returns the entry object specified by the EntrylD (name) you supply as a string. A NULL entry object is returned if the
specified EntrylD does not exist.

GetFAQ

The method returns the FAQ object specified by the name or identifier that you supply as an argument. A NULL object is returned if
the name or identifier does not exist.

GetServerinfo

This method returns the number of licenses, version and other information about the e-FAQ server.

Properties

Clientld (Get)

This read-only property returns the client identifier passed to the e-FAQ server using the IServer::Connect method. The client id can be
used to identify the client in logs. The client id can be any string up to 64 characters long.

FAQs (Get)
The FAQs property returns a collection of FAQs from the e-FAQ server as an IFAQs object.
IsConnected (Get)

IsConnected is a read-only property that returns True if a connection has been established with an e-FAQ server. If no connection is
active, the property returns False.

Name (Get)
The Name property is read-only. It returns the name of the connected e-FAQ server.
ServerNotifications (Get)

This object registers for notification callbacks.
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IServer2 Interface

This interface refines the IServer interface and adds various new features, such as properties, extension functions, entry feedback support,
etc.

Methods

CreateNewEntryFeedbackltem

The CreateNewEntryFeedbackltem method creates a new feedback item. You can add the new feedback item to an Entry using the
IEntryFeedback collection, which is accessible via the IEntry2::Feedback property.

ExtensionFunction

The ExtensionFunction method invokes a named extension function. The first parameter is a BSTR (string value) that specifies the
name of the function. Four additional, optional, VARIANT parameters may be specified.

GetProperty

The GetProperty method retrieves the value of a named Server property.

SetProperty

The SetProperty method sets the value of a named Server property.

Properties
FAQRecycleBin (Get)
Object providing access to logically deleted FAQs.

IServerNotifications Interface

The IServerNotifications interface is currently unused.

IStringList Interface

Interface for a read-only collection of strings.

Methods

Item

This method returns the string at the specified index in the collection.

Properties

Count (Get)
The Count property returns the total number of strings in the collection.
_NewEnum (Get)

This property returns an IEnumVARIANT interface so that you can enumerate through items in this collection.
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IVariantList Interface

Interface for a collection of VARIANTS.

Methods

Item

The Item method retrieves a VARIANT from the collection based on the 1-based index number that you supply.

Properties

Count (Get)

The Count property returns the total number of items in the collection.

_NewEnum (Get)

This property returns an IEnumVARIANT interface so that you can enumerate through items in this collection.

Sample e-Faq Programs

e-Faq ships with several sample applications for those who learn by looking at source code.

FAQ Excel-Loader

This Visual Basic 6 program demonstrates how to bulk-load FAQs from an Excel file.

Visual Basic API Tester

This Visual Basic 6 application was used to test the COM API. It uses almost all the interfaces, properties, and methods that are
described in this document. You can browse, view and edit entries in a FAQ, and add new entries. You can perform queries and
manage FAQs. This application was not intended to solve any real-world problem. Instead, it serves as a test bed and source of
sample code for developers.

Query/Response Web Pages

This query/response application was developed using Active Server Pages (ASP). It demonstrates how the e-FAQ API can be used
to implement e-FAQ on a web site. Users who type questions into a web-based form receive a response immediately from e-FAQ.

Excel exporter

This Microsoft Excel macro exports data from an e-FAQ server to an Excel table.

Word exporter

This Microsoft Word macro exports data from an e-FAQ server into word documents. It can be used to generate hard copies of
the individual entries in a FAQ.

XML Editor
This Visual Basic application views and edits the contents of the XML files generated by the e-FAQ Bulk Loader utility.

e-FAQ Knowledge Manager

e-FAQ Knowledge Manager demonstrates how to add, delete, and update records using a web browser. These HTML pages can be
used to maintain FAQ databases without using email.

Since the e-FAQ Knowledge Manager is an application written in ASP, it is shipped in source code. Consult it for information on
how to use the e-FAQ COM API in a real-world application. This source code is provided as-is. Any modifications or
customizations that you perform are your responsibility to support. Our support of the e-FAQ Knowledge Manager is limited to
installation and setup of the original code that ships with the product.

Interaction Campaign COM API

Interaction Dialer containers in Interaction Administrator provide administrators with the complete functionality needed to define,
administer, and automate campaigns and workflows. However, in some circumstances it is desirable to limit the level of administrative
control that personnel can exert over Interaction Dialer. For example, a night supervisor who needs to start or stop campaigns does not
necessarily need the ability to define workflows, or modify schedule settings.
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The Interaction Campaign COM APl empowers developers to create applications or web pages that provide appropriate supervisory
control over the Dialer. Interaction Campaign COM API is included with Interaction Dialer, a companion product for PureConnect, sold

separately from CIC.

lICWorkflow interface

Automation interface to Workflows.

Methods
Delete Deletes the current workflow. This operation is equivalent to deleting a workflow in Interaction Adminstrator.
Duplicate Duplicates the current workflow to create a new workflow object. A workflow is an encapsulation of campaigns

and runtime properties that define how the associated campaigns will run.

GetActiveCampaignID

Returns the active campaign's ID number.

GetCampaignIDs

Returns a list of Campaign IDs that belong to this workflow.

GetName

Returns the name of this workflow object.

GetProperties

Returns three matching arrays of workflow property names and values.

GetProperty

Returns the value of a workflow property that was specified using its internal name.

GetWorkflowlD

Retrieves the WorkflowID of this workflow object.

PutProperty

Assigns a value to a workflow property specified using its internal name.

RecycleCallList

Recycles the active campaign's contact list to restart the call selection process at the beginning of the Contact
List. This happens automatically after all records are processed.

ReloadZones

Call this method if you have updated a Zone Set in Interaction Administrator and wish to reload time zone
information immediately, without waiting for the workflow to be stopped, restarted or transitioned.

RestartCampaign

Restarts the active campaign in this workflow.

RestartWorkflow

Restarts this workflow.

StatusAuto

Sets the workflow status to Auto, so that the workflow runs in accordance with a schedule.

StatusManual Off

Sets workflow status to "Manual Off". This effectively stops execution of the workflow.

StatusManualOn

Sets the workflow status to "Manual On", which places the workflow in a running state, but not under control of
a schedule.

StatusPause

Temporarily halts execution of the workflow, until you change it to an active status condition. If you call
IICWorkflow::StatusPause a second time, the workflow is unpaused.

lICCampaign interface

Automation interface to Campaign objects.

Methods
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Delete Deletes this campaign, unless the campaign is referenced in a workflow. Campaigns that are referenced by one or
more workflows cannot be deleted until all references are removed using the Workflows container in Interaction
Administrator.

Duplicate Duplicates a specified campaign to create a new Campaign object. A campaign is a physical encapsulation of the
properties and data associated with a contact list.

GetCampaignID | Retrieves the CampaignID (GUID) of this campaign object.

GetName Retrieves the name of the current campaign.

GetProperties | Returns matching arrays of campaign property names and values.

GetProperty Returns the value of the specified campaign property.
PutProperty Assigns a value to the specified campaign property. The Status and Name properties cannot be changed using this
method.

TestCampaign | Tests a campaign filter by appending sort and filter criteria to create an SQL select statement that returns a count of
rows selected by the filter. An error message is returned if the filter fails.

lICWorkflowManager interface

Automation interface to Workflow Manager.

Methods

GetActiveWorkflowlDs | Returns an array of all active Workflow IDs (Active=0On or Manual On). Workflows that are not in an active
status condition are not selected.

GetCampaign Returns Campaign Object with Campaign ID pCID.

GetCampaignIDs This method returns a Campaign object specified by Campaign ID. Use the IICCampaign object to manipulate
the campaign properties.

GetDefaultObjectID Returns the Default Object ID for the specified object type.

GetNameByID This method returns the name property of an object specified by its object Id number. This is the name
specified in Interaction Administrator when the campaign, workflow, or other type of object was defined.

GetObjectIDByName This method returns an Object ID for the specified name and object type.

GetObjectIDsByType This method returns a safearray of object IDs of the specified object type.

GetWorkflow This method returns a Workflow object specified by Workflow ID. Use the IICWorkflow object to manipulate
the workflow properties.

GetWorkflowlDs Returns a safe array of all Workflow IDs, including the IDs of workflows that are not in an active status.

StopAllWorkflows This method stops all running Workflows.

Sample programs

When Interaction Dialer is installed, sample applications written in VB6 and ASP are placed in an examples folder on the Central Campaign
server.

An Active Server Pages example demonstrates how the API can be used to expose a limited level of control over the Dialer. It allows
users to view and change the runtime properties of workflows and campaigns using a web browser, rather than Interaction Administrator.
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A Visual Basic example demonstrate how the Interaction Campaign COM API can be used in a Windows application. This example is
functionally like the ASP example; it allows you to edit properties of a campaign or workflow, or to apply controlling actions.
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Predictive Dialer COM API

The Predictive Dialer COM API enables programmers to develop applications that are functionally like the Interaction Scripter client. It
provides a callback object that notifies an application when predictive events occur, and a server object whose methods manipulate and
disposition data pops. The server object logs in the agent, transitions to the next stage, and updates contact list data. It provides overall
control over interactions between an agent and the Outbound Dialer server.

Interaction Scripter client does not need to be running when you run a Predictive Dialer COM application. However, the Scripter client must
be installed on the PC that runs your third-party application, so that component files can be shared.

IEICClientCallback2 interface

Implement the IEICClientCallback2 object in your client application to monitor for predictive events. It provides notification when a
workflow starts, stops, or transitions to a different campaign.
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Methods

CampaignTransition

This method is called when a workflow transitions from one campaign to another.

DataPop DataPop notification occurs when a new call arrives in an agent's queue from a campaign running in predictive,
preview, or power mode. Call data is represented in parallel name and value arrays.
PostMessage PostMessage is a generic method that was added for extensibility. It provides a generic callback method that the

Dialer can call in future situations. This method is reserved for future use.

PreviewCallAdded

This method is called when a preview call is sent to a specific agent, before the agent places the call for a
campaign that is running in preview mode. The data for the call is represented in parallel name and value arrays.

SetFormDefinition

This method is reserved for Interaction Scripter for Form Updates. Dialer calls this method when forms change.
VB applications should implement the function in the class library as a function that returns a NULL result.

ShutdownClient

This method is called when the predictive client needs to shutdown.

WorkflowStarted

This method is called when a workflow is started.

WorkflowStopped

This method is called when a workflow is stopping.

IEICPredictiveServer2 Interface

This interface provides a server object whose methods manipulate and disposition data pops.

Methods

AssociateCall The AssociateCall method has been deprecated. Do not use it in your application.

CallComplete Use CallComplete when the Agent has completed a call. It sends call results, including Reason and
Finish Codes, to the Outbound Dialer server.

GetFormDefinition GetFormDefinition returns the base Interaction Scripter form definition. This method is reserved for
internal use by PureConnect. Do not call this method in custom applications.

Logoff This method logs the agent out of a workflow.

Logon This method logs the agent into the specified workflow.

PlacePreviewCall Places a preview call for the associated workflow. Names and Values represent contact information
passed to the dialing handler.

PostMessage Posts a message to the client callback handler. This generic method is included for future
extensibility.

SetAgentType SetAgentType sets the AgentType value for the current agent. This method is primarily used in
conjunction with Finishing Agents (agents that do not receive regular campaign calls).

SetAvailability SetAvailability sets the agent break status. If p_IsAvailable is False, then set the agent into a break

state. If True, then set the agent as available to receive campaign calls.

SetMarshalledClientCallbackHandler | This method associates the Predictive Dialer COM object with an IEICClientCallback2 watcher, so

that you can monitor for changes to the Predictive Dialer COM object. This watcher object must be
implemented in a client application.

SetThreadedClientCallbackHandler | This method associates the Predictive Dialer COM object with an IEICClientCallback2 watcher. This

allows you to monitor for changes to the Predictive Dialer COM object. Your client application must
implement this watcher object.

StartReceivingCalls

The StartReceivingCalls method informs the Dialer that the associated agent is ready to start
receiving campaign calls. This method is usually called after the login initialization is complete.

UpdateCallData

The UpdateCallData method updates the data associated with the current outbound contact. This
method is usually called right before a contact is transferred to another party.

UpdateStage

Call the UpdateStage method when the agent has transitioned to a new stage in the call.

ValidateVersion

Interface version number being used by the Interaction Scripter predictive client. See IFREV TypeDef
for values.

Properties
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AvailableWorkflows | The AvailableWorkflows property returns the list of available workflows in a SAFEARRAY. The workflows in the
(Get) list only include those that agents can log into. No agentless workflows are listed.

Userld (Get) Returns the User Id of the logged in agent.

Userld (Put) Sets the User Id of the logged in agent.

Sample application

The APl includes a sample application, written in VB6, that illustrates techniques used to create a Predictive Dialer COM application.

Establish a connection with CIC
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The Predictive Dial COM example application (PredictiveDialCOM2Example.exe)

The sample application prompts for information it needs to establish a Notifier connection with the CIC server. Once this connection is
established, it populates a list of active workflows.

Once a workflow is selected, the user can join (logon) the workflow to receive calls. Information about the current call is displayed in the
Call Information list. The user can disposition a telephone call by pressing the Success, Failure, or Deleted buttons.

Success indicates that the call met the overall objective of the campaign. Failure indicates that it did not. Deleted marks the current
Contact List record so that the contact is never called again. The Total Sales field collects data that will be written to the Contact List
database once the call is dispositioned. Interactions with the program are displayed as Log Entries.

Once you understand the programming behind these simple tasks, you will be able to design more advanced API applications.

Interaction Scripter API

The term Interaction Scripter refers to the client application that executes scripts, and to the programming AP/ that is used to create
scripts.

Interaction Scripter client is a desktop application that executes campaign scripts written in HTML and Javascript. This application is
used primarily by call center agents. Scripter's primary job is to execute campaign scripts-HTML pages that guide call center agents
through stages of a campaign call.
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Scripts are displayed inside an embedded instance of Microsoft's Internet Explorer web browser. Since the browser component is built-in,
Interaction Scripter can intercept and respond to web events. It fully leverages IE's feature set and can render sophisticated user
interfaces. Scripter client populates the agent's display with information pertaining to the call, the customer, and the campaign, based on
behavior defined in scripts.

Interaction Scripter APl is a set of JavaScript extensions that support events, actions, and attributes. These elements manipulate objects
in all environments, regardless of whether Interaction Dialer is also installed. Predictive actions, events, and attributes work only when
Interaction Dialer is installed on the CIC server. Standard actions, events, and attributes work with or without Interaction Dialer.

e Events are notification messages from the CIC server that trigger script functions. For example, an event can provide notification that
a queue on the server has changed. When a call is placed on a queue, this event changes the queue, generating an event message.

e Actions are messages from Interaction Scripter scripts to the server that trigger an action on the CIC server.

e Attributes are data items passed by actions to the CIC server. A Dialer attribute is data from a column in a database that is
associated with a campaign.

For more information, see the following:
. Interactlon Scripter .NET Cllent Help at

° Interact/on Scnpter Developers Guide at
https://help.genesys.com/cic/mergedProjects/wh_dlr/mergedProjects/scripter_dg/desktop/interaction_scripter_developers_guide.htm.

Dialer IceLib API

Dialer IceLib API provides a set of classes for accessing Customer Interaction Center outbound dialing functionality. Classes in the
ININ.IceLib.Dialer namespace provide Workflow Monitoring, Dialer Agent Session Managementm and Dialer Call Handling. Classes
inthe ININ.IceLib.Dialer.Config namespace access your Dialer server's configuration.
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Web Service Extensibility

The widespread use of the Internet by business organizations has led to the development of web services-remote procedure calls
that carry out some sort of data processing task, typically to return data of some sort.

Web services allow computers to request and receive information in much the same way that people use a web browser to open a
web page. Web services employ the familiar request/response mechanism used by web browsers:

1. Aclient (e.g. web browser) connects to a server and passes a request (fetch a web page). The client then waits for the server
to respond.

2. The server responds in one of two ways. It either returns the requested information, or it responds with an error message that
tells the client why the request could not be completed.

3. Once the server has responded to the client, it closes the connection, discards all state information about the transaction, and
listens for another request.

In the world of web services, the client is a computer program that asks a server (another computer program) to execute a method
(web service) that returns data (instead of a web page). For the request/response model to work, messages must be formatted in a
way that both computers can understand. Since there are millions of computers connected the Internet, which use many different
operating systems, the format of remote procedure calls has been standardized using a technology called SOAP. SOAP stands for
Simple Object Access Protocol.

SOAP is an XML-based wire protocol designed for decentralized, distributed networks such as the Internet. SOAP defines
conventions that allow one computer to invoke a remote procedure in another. These remote procedure calls (SOAPrequests) can
be transported using a variety of network protocols. HTTP protocol is widely used.

XML stands for Extensible Markup Language. XML provides a structured way to define data in plain text format, so that data can be
exchanged between computers. SOAP messages are XML documents, which are text files formatted per specific guidelines. (SOAP
is the specification that defines the guidelines used to describe remote procedure calls using XML.)

Before a SOAP request can be transported to another computer, the request is structured using XML so that the remote system can
interpret the request in accordance with the SOAP specification. Responses from the remote procedure are returned as XML
documents.

SOAP uses XML to package the data passed to a method, or received as a response. SOAP itself is nothing more than a set of rules
that define how to describe method calls and return values using XML syntax. XML merely describes data, without consideration for
the way that the data is processed or presented.

SOAP makes it possible for a remote computer to start a handler on CIC, and to receive data from CIC in response.
Likewise, handlers that use CIC's SOAP tools can call remote web services.
SOAP extends CIC interoperability to the entire Internet. Anything that "talks" SOAP through HTTP can communicate with CIC.

Any computer platform (Windows, Unix, Linux, Mac, etc.) that can create and transport a SOAP message request can start a handler
on CIC. Depending upon the type of request, the handler may or may not send back a response containing values looked up by CIC.

For example, a Unix Server might use Enterprise JavaBeans (EJB) to generate a SOAP Message requesting information about a
user's status. When the request is received by CIC, it starts a handler that looks up the user's status, generates a SOAP response,
and transports the response back to the requesting server. When the Unix system receives this SOAP payload, it uses another EJB
to parse and process the information.

Conversely, handlers created using CIC's SOAP tools can request data from web service sand remote procedures. For example, a
handler might request the current price of a stock from a brokerage service, check inventory levels from an inventory management
system, conduct a credit card transaction, or obtain a weather report.

SOAP support on CIC is implemented by SOAP Tools in Interaction Designer that define initiators, invoke remote procedures,
process requests and payloads. SOAP messages are channeled through a SOAP ISAPI Listenertask that runs on an IIS server.

Developers can optionally use SOAP Notifier COM components to develop applications that directly invoke SOAP handlers. SOAP
Notifier COM components are compatible with any language/application that supports Microsoft's Component Object Model.

HTTP protocol is typically used to transport SOAP message traffic (XML text files) across the Internet. In the CIC environment,

HTTP requests are received by SOAP ISAPI Listener-an ISAPI DLL that runs on an IS web server. A listener receives incoming HTTP

messages that contain SOAP requests for some type of service. It parses these messages, decides whether to process the request

(based upon threshold values and filter configurations), and dispatches the request to the appropriate method for processing. If the

service returns a response, the listener packages the response into an HTTP payload, and sends that back to the client. A listener

also handles requests for WSDL information about web services.

o The SOAP ISAPI Listener looks at incoming SOAP requests, decides whether requests should be forwarded to CIC to invoke a

handler, and forwards appropriate requests to CIC's Notifier subsystem, which in turn calls Interaction Processor to invoke the
handler associated with the initiator specified in the incoming message.
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e The SOAP ISAPI listener and packages return values from handlers into outgoing HTTP responses, and sends them to the
client. If the listener decides not to forward a request to CIC for processing, it returns a fault message (SOAP and/or HTTP) to
the requesting client application.

SOAP Listener passes requests to the CIC Notifier subsystem for processing. Notifier alerts the Interaction Processor subsystem,
which in turn starts the handler needed to process the request. Response data from the handler is passed back to the Listener task
for transport to the remote computer.

In general, SOAP Listener translates HTTP requests into notifications and acts as a gatekeeper to prevent denial of service attacks.
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On the receiving end, the response message is decoded and used by the requesting computer in some way. This low-overhead
approach permits a single server to share information with many clients. We've covered a lot of concepts in a short time, so let's
review them:

e SOAP defines conventions needed to invoke the methods of a web service.

e A web service is a procedure of some sort that is called by a remote client application to initiate a process or request some
sort of data.

e CIC's SOAP tools allow web services to be created using Interaction Designer.

e SOAP uses existing transport protocols (such as HTTP) to transmit an XML payload to another computer. The payload contains
everything that the remote computer needs to execute a function (arguments and data).

e Services that understand SOAP requests can be expected to return XML responses in accordance with the rules of SOAP.

Customer Interaction Center supports open standards (SOAP, XML, WSDL, etc.) that promote interoperability and are applicable to
many types of application development. SOAP tools are primarily used by developers, advanced handler authors, and professional
services personnel. However, the services created using SOAP tools are another matter. Anyone, anywhere on the Internet is
potentially a consumer or provider of information processed by SOAP handlers. The possibilities are limitless.

For example, a caller might enter a PIN number into an auto-attendant menu created using Interaction Attendant. In turn, Attendant
could start a SOAP handler that passes the PIN number to a remote web service to look up information that is spoken back to the
caller using CIC's text-to-speech capability.

A remote procedure invoked by SOAP can perform any kind of data processing tasks, ranging from a simple lookup to complex
transactions that accept complex data types as input. SOAP does not impose any limits on the application functionality that can be
invoked.

SOAP tools allow developers to create handlers that retrieve data from web services, or which function as web services. Handler-
based services can be described using Web Services Description Language (WSDL)-an XML-based language that defines the
functionality offered by a web service and how to access it. WSDL makes it possible to describe a service on CIC so that a
worldwide audience can find and use it. WSDL describes the service, all parameters required to invoke it, and the location (endpoint)
where the service can be accessed.

SOAP makes it possible for programs written in different languages and running on different platforms to communicate with each
other. SOAP integrates the PureConnect platform with business-to-business interactions and information services. Once a SOAP
endpoint is exposed to the internet, a handler may call into the endpoint, which may be on the Internet or an Intranet.

SOAP is not appropriate for low-level, tightly-coupled transactions, due to network latency and the overhead imposed by the SOAP
messaging encoding and decoding. SOAP is best suited for simple, high-level transactions, such as sending a name and PIN number
to a service to obtain an account summary.

SOAP Tools in Interaction Designer
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SOAP-related tools in Interaction Designer create handlers that process SOAP requests or responses. Each tool is briefly
summarized.

Initiator Tools

SOAP Initiator

This initiator triggers if the "Notification Event" of the request matches a specified string. The Notification Event on which
the Initiator triggers is specified in the property dialog.

Request Tools

SOAP Get Request Info

Queries some information from the request handle.

SOAP Abort Request

Aborts the request. Aborting a request is useful if a SOAP request handler is registered as a Monitor handler.

SOAP Get Transport Info

Returns an XML document containing transport specific (header) data. It allows the client to include any kind of out-of-band
data in the request.

SOAP Expects Response

Takes a different exit path depending on whether the SOAP request requires a response (YES) or not (NO).
SOAP Parse Request Payload

Parses the payload of the request into an XML document.

SOAP Send Response

Sends the specified payload as response to the sender of the request. To support transport specific features, the "Transport
Control Data" argument takes an XML node whose content will be sent back to the client. It can be used to send transport
specific out-of-band data to the client.

Payload Processing Tools

SOAP Create Envelope
Creates a new SOAP envelope.

SOAP Get Body

Retrieves the Body element from the SOAP envelope. A body must exist. If it can't be found, the tool exits through "Failure”
and attaches error information to the envelope.

SOAP Get Body Element

Retrieves the first body element that matches the given base name and namespace.
SOAP Add Body Element

Adds an entry to the body of the SOAP envelope.
SOAP Query Encoding Style

Matches a space separated list of URIs against the "encodingStyle" attribute of the given element. If the element doesn't
have an encodingStyle attribute, the parent of the element is checked and so on, until an element with an "encodingStyle"
attribute is found. If that attribute contains any of the specified encoding style URIs, the tool returns through "Found" and
returns the style that was found.

SOAP Get Header

Retrieves the header element from the SOAP envelope if it has one.
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SOAP Get Header Element

Retrieves the first header element that matches the given base name and namespace. Returns the first element in the
header if neither a name nor namespace is given. Takes "Not Found" exit if the envelope doesn't have a header or the
element can't be found.

SOAP Get Header Elements

Returns iterator to a list of header elements filtered by the given arguments. Takes the "None" exit if envelope has no
header or none of the header elements matched the filter criteria.

SOAP Add Header Element

Creates a header element and adds it to the given envelope. If the envelope does not have a header, one is inserted before
the Body element.

SOAP Get Fault

Retrieves fault information from the SOAP envelope. If there is no <Fault> element in the envelope, the "No Fault" exit is
taken and NULL elements and empty strings are returned.

SOAP Set Fault

Adds a <Fault> element to the envelope or replaces an existing one.

SOAP Create Fault Response

Copies the request envelope and replaces all children of the <Body> element with a single <Fault> element. It combines
the functionality of the "SOAP Create Envelope" tool with the functionality of the "SOAP Set Fault" tool.

SOAP Get RPC Parameter

This is a convenience tool for cracking RPC requests. It retrieves a parameter element (child) from the first element in the
<Body> element (method in an RPC request).

It returns the first element that matches all the specified arguments.

SOAP Add RPC Parameter

This is a convenience tool for composing RPC requests or responses. It adds a parameter element to the first element in
the body of the envelope, which represents the method in RPC requests. Use the XML tools to add complex data (not just a
string) to the parameter by manipulating the returned "Parameter Element" node.

SOAP Get RPC Method Info

This is a convenience tool for cracking RPC requests. It retrieves the first child element of the SOAP <Body> element
(Method element in RPC requests). It returns a collection containing the child elements of the method, which constitute the
method arguments.

SOAP Get Next RPC Parameter
This tool returns the element node at the current iterator position and returns an iterator to the next position.

SOAP Create RPC Response

This is a convenience tool for composing the response envelope for an RPC request. It copies the source envelope and
replaces the method element in the body with an element that has the same name but "Response" added to its name. It also
adds a <Result> element as child of the method element.

SOAP Set Element Type

In SOAP, the type of an argument or the return value is specified by the service description and doesn't need to be included
in the payload. However, the service may define the type as xsd:anyType, for VARIANT types. This tool allows you to include
the type in the argument.

SOAP Create Array

Turns an element, for example an RPC parameter, into a SOAP array. The array is created for values supplied as list of
strings or empty elements that can be populated with complex data.

Invocation Tools

57



SOAP HTTP Request

This tool issues an HTTP request to the specified URL with the SOAP request envelope as payload. The response body is
parsed and returned as response envelope.

Helper Tools

SOAP Base64 Encode

Converts a supplied UNICODE string to the specified character set (default = UTF-8) and encodes the resulting data into a
Base64 string. Characters that cannot be translated to the destination character set will be represented as ' 2 '. Wide
character sets, such as UTF-16 are currently not supported.

SOAP Base64 Decode

Decodes the base64 encoded string into the binary representation and converts it to UNICODE based on the specified
character set.

SOAP Base64 Encode File

Reads the specified file as binary data and encodes it into a base64 string. This tool can be used to send any kind of data
through SOAP requests. For example, you could encode a wave file in a SOAP message.

SOAP Base64 Decode To File

Decodes the base64 encoded string into the binary representation and writes the data to the specified file as binary data.

SOAP Notifier COM API

SOAP Notifier COM components provide a high-performance method of calling handlers without incurring the performance penalty
of HTTP-based Listener operations. Third-party applications created using the SOAP Notifier COM components can directly create
and forward packets to Interaction Processor, bypassing the need to create packets received using HTTP and the Soap Listener
task. These packets are identical to those created by SOAP ISAPI Listener. However, the process is faster than HTTP-based
Listener operations.

SOAP Notifier COM is appropriate for Windows client workstations that can run COM applications. It is not appropriate for
operating systems (Linux, for example) that do not support COM. Interfaces in the SOAP Notifier COM API are listed below.
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ISOAPBase64 Interface

The ISOAPBase64 interface provides stateless methods that convert binary data to and from Base64 encoded strings. Base64 is an
encoding system (defined by REC 2045) that formats binary information for transmission through network connections.

Methods
DecodeToBinary
Decodes the base64 encoded data and returns it as a SAFEARRAY of bytes.

DecodeToFile

Decodes base64 encoded data and writes it to a file. Existing output files can be appended or overwritten.

DecodeToStream

Decodes Base64 encoded data and writes it into the supplied IStream or ISequentialStream.

DecodeToString

Decodes Base64 encoded data into a string.

Encode

Encodes the supplied data into a string that is Base64 encoded.

EncodeFile

Encodes the binary content of a file to create a Base64 encoded string.

ISOAPNOotifierTransport Interface

This component provides a COM wrapper on the Notifier (client) library. The Notifier Transport component represents a client
connection to a certain Notifier server. It is used by the SOAP Request component as transport for requests.

Methods
Connect
Connects the transport to the Notifier server.

GetProperty

The GetProperty method retrieves a supplemental transport property.

SetProperty

SetProperty assigns a value to a supplemental transport property.

Properties

Connected (Get)

This read-only property returns True if the transport is connected to a Notifier server, meaning that the
ISOAPNOotifierTransport::Connect method has been called.

ISOAPRequest Interface

The ISOAPRequest interface issues raw Notifier SOAP requests. This component sends SOAP requests to a handler. It packages a
request, sends it, waits for a response, and unpacks the response.
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Methods

GetProperty
Retrieves a supplemental SOAP request property.
Initialize
Initializes the request object and sets the transport to be used. This method does not return a value.

Reset

Resets the request object by clearing SOAPAction, Transportinfo, and Payload data. This prepares the object for the next
request.

Send

Sends the request and waits synchronously for the response object to be returned.

SetProperty
Sets a supplemental SOAP request property.

SetSOAPPayload

Sets the SOAP payload data to be sent with the request. Currently, this must pass an object that supports IStream.
However, strings may be supported in a future release. This method does not return a value.

SetTransportinfo

Sets the transport information data to be sent with the request. Currently, this must pass an object that supports IStream.
However, strings may be supported in a future release. This method does not return a value.

Properties

ExpectResponse (Get)

This property returns True if a response to this SOAP request is expected. False is returned if the request is a one-way
request that does not generate a response.

ExpectResponse (Put)

Set this property True if the request should generate a response. If the request is a one-way request that does not generate
a response, set this property to False.

InitiatorEvent (Get)

Returns the Initiator Event of this request. Uses SOAPAction if the event is not specified or empty. Changing the
SOAPAction also resets this property.

InitiatorEvent (Put)

Sets the Initiator Event of this request. Uses SOAPAction if the event is not specified or empty. Changing the SOAPAction
also resets this property.

SOAPAction (Get)
Gets the SOAPAction code of the request.

SOAPAction (Put)
Sets the SOAPAction code of this request.

Transport (Get)

The Transport property is read-only. It returns an IlUnknown pointer to the transport object used for requests.
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ISOAPResponse Interface

The ISOAPResponselnterface component writes payload or transport data into ISequentialStream streams, and returns payload
objects.

Methods

WritePayload
This method writes payload data to an ISequentialStream passed as an argument.

WriteTransportCtriData

This method writes transport control data to an ISequentialStream passed as an argument. If there is no transport control
data, nothing is written, but the method succeeds.

Properties

Fault (Get)

Returns True if the server returned a SOAP Fault message; otherwise False.

Payload (Get)

Returns an IlUnknown pointer to an object that implements IStream, so that you can access the object's SOAP response
payload data.

Requestld (Get)

Returns the Identifier of this request.

Success (Get)

Returns True if the request was successfully executed on the server; otherwise False.

TransportCtriData (Get)

This read-only property returns an object that implements IStream, so that you can access the object's transport control
data.

SOAP-Related Documentation

For information about CIC's SOAP support, see the CIC and SOAP API Developer's Guide at

https://help.genesys.com/cic/mergedProjects/wh_soap/desktop/ic_and_soap_api_developers_guide.htm. It provides primers on
SOAP and XML, and discusses components that must be installed to implement SOAP functionality in CIC. Step-by-step procedures

explain how to install and configure the SOAP ISAPI Listener DLL and SOAP Notifier COM components. It also provides instructions
for using the SOAP Tracer utility.

What is the ICWS SDK?

Interaction Center Web Services (ICWS) SDK is a REST API for web, mobile, and desktop clients. The ICWS SDK includes:
e ICWS API documentation
e Example applications
e Language-specific Libraries

The ICWS SDK is available in CIC 4.0 SU 6, CIC 2015 R1, and later. Downloads for Windows machines and platforms other than
Windows are provided.

Important!
To use the ICWS API, the CIC server must have the I3_FEATURE_ICWS_SDK license installed.
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Should You Use ICWS or IceLib?

IceLib is a mature framework with some features that are not yet in ICWS.
e For .NET applications, use the Interaction Center Extension Library (IceLib).

e For web applications, mobile applications, and applications (such as Java applications) that do not use .NET, use CIC Web
Services. Those applications can use CIC Web Services directly, but would require a .NET layer if you used IceLib. The
exception is if you need IceLib features that CIC Web Services does not offer.

For more information, refer to the PureConnect Developer Site. ICWS documentation is at:
https://developer.inin.com/documentation/pages/default.aspx.
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Third-Party Integration Conclusion

Customer Interaction Center provides a single, unified platform for third-party application development. Built-in tools such as
Interaction Designer provide even casual developers with everything needed to develop powerful telephony solutions. These
solutions can be exposed to the entire Internet as web services.

Robust APIs make it possible to create third-party applications that interact with the CIC client, or replace it altogether. COM
technology exposes the power of Customer Interaction Center and its subsystems (Interaction Designer, CIC client, Notifer, e-FAQ,
etc.). Moreover, developers can extend server functionality to address any conceivable need, using C++ and other programming
languages that support Microsoft's Component Object Model. Programmers can also create custom development tools that
integrate seamlessly with Interaction Designer.

Since CIC is based on open standards, it supports the latest trends in software development, including COM, TAPI, and the ability to
call web services on thousands of computers across the Internet. The system was designed from the onset to be powerful, open,
and extensible. Third-party applications can integrate with CIC using a variety of technologies, ranging from simple DDE actions, to
complex COM component integration.
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Glossary

e Terms used by IceLib Developers
e Terms used by e-FAQ Developers
e Terms used with SOAP and XML Technology

Terms used by IceLib Developers

ACW

After Call Work.
ANI

Automatic Number Identification. ANI provides the phone number of a person calling in.
Attribute

An attribute is a piece of information about an object that travels with an object throughout CIC. Telephone calls, chat
sessions, and emails are all objects processed by Customer Interaction Center. An example of an attribute of an object
might be the telephone number of the person who placed the call.

Some of the attributes that can travel with a telephone call are:




AssignedWorkgroup

Call Log

Call Note

Calling Party Number

Conference Chat

Customer Type

EIC_ACDWorkgroup

EIC_AdviceOfChargeEnd

EIC_anidnisstring

EIC_CallDirection

EIC_Callld

EIC_CalllIDKey

EIC_CallingPNNumberDigits

EIC_CallingPNNumberingPlan

EIC_CallingPNScreeningind

EIC_CallingPNTypeOfNumber

EIC_CallState

EIC_CallStateString

EIC_CallType

EIC_FormattedRemoteTn

EIC_LineName

EIC_LocalName

EIC_LocalTn

EIC_LocalTnRaw

EIC_LocalUserld

EIC_MonitoringUserld

EIC_Presentationindicator

EIC_ReasonForCall

EIC_RecordingUserlD

EIC_RemoteName

EIC_RemoteNameRaw

EIC_RemoteTn

EIC_RemoteTnDisplay

EIC_RemoteTNNormalized

EIC_RemoteTnRaw

EIC_StationName

EIC_UserSpecificQueueName

EIC_Workgroup

ForExtension

Hold

Language

LocalUserld

NocCall

OnHoldAudioFile

Recording RequestedBy

Some of the attributes of a chat objects are:

Address 1 Address 2 Address 3

Call Id City Company Name
Contact Description Email Info Request
Local ID Name Phone number
Queue name Remote ID State
StateString Zip

Since CIC is highly programmable, a variety of tools allow you to retrieve or modifiy the attributes of an object. CIC users
can manipulate attributes using handlers. Interaction Attendant users can manipulate attributes using auto-attendant
menus. And of course, the COM API provides programmers with direct access to all object attributes.

It is the logical, event-driven architecture of Customer Interaction Center that makes this high level of integration possible.
For a comprehensive guide to object attributes, see the Interaction Attributes Reference Guide (attrib.chm) that ships

with CIC.

Blind Transfer

Transferring a call without speaking to the intended recipient is called a blind transfer.

Chat Session

A real-time typed conversation between two parties over the Internet.

A template that defines the attributes of its members. The analogy of a "cookie cutter" is often used to describe what a
class does. A cookie cutter is a template (class) that defines the shape and size of a cookie (object). An object is an

instance of a class. For example, a cookie object is an instance of the cookie cutter class.

Callback Object
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Callbacks are functions called when data changes. C++ provides hooks that allow functions to be called automatically
when data changes.

Consult Transfer

Transferring a call after speaking with the intended recipient is called a consult transfer.

Customer Interaction Center

Customer Interaction Center (CIC) is a powerful Windows NT-based interaction-processing engine from Genesys. This
engine and its associated customization tools can be used to automate the processing of virtually any type of
communications event including telephone calls, faxes, e-mail messages, pages and Web hits.

DND
Do Not Disturb

DNIS

Dialed Number Identification Service. DNIS is a feature of 800 and 900-number lines that provides the phone number of a person
calling in.

DTMF

DTMF stands for Dual Tone Multi-Frequency. This impressive term describes the tones generated when buttons are pressed
on a Touch-tone telephone. Each tone is a combination of two tones, one high frequency, and the other low frequency.

IUnknown Interface

Every COM component implements an internal interface named IUnknown. Client applications can use the IlUnknown
interface to retrieve pointers to the other interfaces supported by the component.

IDispatch Interface

The IDispatch interface provides a late-bound mechanism that can be used to access information the methods or
properties of an object.

HRESULT (Result Handle)

COM interface methods return a value of the type HRESULT, which stands for "result handle". HRESULTSs are 32-bit values
with several fields encoded in the value. In Visual Basic, a zero result indicates success and a non-zero result indicates
failure.

Object Watcher

An object watcher signals changes to a specific object. This is accomplished by the object calling back into the watcher.
This process uses a separate thread, so you must handle GUI or thread dependent calls in the appropriate way for your
development environment.

Park
In the CIC client, calls can be "parked" on an intended recipient's extension until the recipient becomes available. Park
places the call in the recipient's My Calls list so the recipient can select it later.
Status
The "My Status" combo box in the CIC client sets an agent availability indicator that affects the processing of calls directed
to an agent. By default, any status condition other than Available, Available, Forward or Available, No ACD sends incoming
calls to voice mail. Status values are maintained in Interaction Administrator.
Safe Array
A safe array is an array that contains information about the number of dimensions and the bounds of its dimensions.
WorkGroup

Workgroups are logical groups of users (e.g., departments) that can function as a group in the CIC system. Workgroups can
have extensions and queues that enable all members of a workgroup to receive calls notifying the workgroup. In addition,
workgroups can receive regular calls and ACD calls that are routed to specific workgroups and agents. You may also create
workgroups to serve as distribution lists (to the members) of voice mail, email, and faxes from within CIC.

Terms used by e-FAQ Developers
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Absolute Score Threshold

The absolute score threshold is a decimal number between 0 and 1. When searching for a match, e-FAQ ignores any entry whose
absolute scores is lower.

Adjective

Adjectives are words that describe, identify, or quantify a noun.
Adverb

Adverbs are words that indicate how, when, where, how much, time, place, cause, degree, or manner.
Alias

The term alias represents a word and its expansion. For example, "FAQ" expands to "frequently asked questions".

Each alias is a word, acronym, or phrase that you can map to words in e-FAQ's dictionary. e-FAQ's dictionary contains over
one hundred thousand English words and synonyms. This dictionary handles most of the words that need to be matched.
Occasionally, you may want to add your own terminology, or aliases, to this dictionary.

For example, if you map the FAQ alias to the phrase "frequently asked questions", when someone submits a query with the
acronym FAQ, e-FAQ matches on the words frequently, asked, and questions.

Aliases

The term alias represents a word and its expansion. For example, "FAQ" expands to "frequently asked questions".

Each alias is a word, acronym, or phrase that you can map to words in e-FAQ's dictionary. e-FAQ's dictionary contains over
one hundred thousand English words and synonyms. This dictionary handles most of the words that need to be matched.
Occasionally, you may want to add your own terminology, or aliases, to this dictionary.

For example, if you map the FAQ alias to the phrase "frequently asked questions"”, when someone submits a query with the
acronym FAQ, e-FAQ matches on the words frequently, asked, and questions.

Alias Object

An alias represents a word and its expansion. For example, "CIC" expands to "Customer Interaction Center". Aliases can
either be applied when an entry is indexed, when a query is performed or both times. The point of when this expansion is
applied can be configured for each alias separately.

Alias Objects

Each alias object represents a word and its expansion. For example, "CIC" expands to "Customer Interaction Center".
Aliases can either be applied when an entry is indexed, when a query is performed or both times. The point of when this
expansion is applied can be configured for each alias separately.

Answer

An answer is the informational text in the body of an entry. When e-FAQ sends a response to a query, that response can
contain entries, and thus, answers. Entries in a FAQ contain both questions and answers. When authoring a new entry, an
answer is sent in the body of the email. You create answers when you create an entry.

Answer Score

When matcher compares a query to the entries in a FAQ, it assigns each question a score and each answer a score
(depending upon how you have configured this behavior in e-FAQ Configuration Utility). e-FAQ then combines the two
scores to calculate an entry score. The entries with the highest scores are sent in the response.

Attribute

An attribute is a value that denotes an entry as belonging to a subset of entries. You assign an attribute to an entry when
you create that entry. For example, you can create an entry with attribute X. You can then configure a response mailbox to
only search for answers among entries that have attribute X. When a query arrives in that response mailbox, only entries
that have attribute X are considered as potential matches. Each entry may be assigned only one attribute.

Attributes

An attribute is a value that denotes an entry as belonging to a subset of entries. You assign an attribute to an entry when
you create that entry. For example, you can create an entry with attribute X. You can then configure a response mailbox to
only search for answers among entries that have attribute X. When a query arrives in that response mailbox, only entries
that have attribute X are considered as potential matches. Each entry may be assigned only one attribute.
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Author

The person who submits entries to a FAQ is the author of the entries submitted.

Authoring Mailbox

An email address to which authors submit entries. Each e-FAQ installation can have only one authoring mailbox.

Collection

A collection is a set of related objects. Collections contain an ordered set of items that can be referred to as a unit. Most
collections allow you to access individual items by specifying either a numeric index or a string key. Collections are like
linked lists, except that pointers are not used to refer items in memory. Collections can store any type of object or variable
derived from a class.

Collections

A collection is a set of related objects. Collections contain an ordered set of items that can be referred to as a unit. Most
collections allow you to access individual items by specifying either a numeric index or a string key. Collections are like
linked lists, except that pointers are not used to refer items in memory. Collections can store any type of object or variable
derived from a class.

Deictic Pronoun

Deictic means "pointing". Deictic pronouns always refer, or point to a context-specific subject. Deictic pronouns are a
subclass of pronouns whose meanings are determined entirely by the context of a conversation. Deictic pronouns do not
have a fixed meaning. In fact, all pronouns are somewhat deictic, since they all point to a noun.

For example, the pronoun "I" refers to the speaker, and "I" means different things depending on the speaker. "I" is usually
considered to be less deictic than some other pronouns because it always refers to the speaker. Pronouns like "that" or
"this" are very deictic since it is difficult to determine algorithmically what the pronoun points to.

For example, "that" sometimes refers to things discussed previously in the conversation. It can also refer to something
being pointed to; or to a situation. For these reasons, it is difficult for computational linguists to process deictic pronouns
programmatically.

Command

An instruction sent with an entry that tells e-FAQ to perform some operation with the entry. For example, the .DELETE
command deletes the specified entry. The .FAQ command specifies the FAQ on which the operation should be performed.
The .SPELLCHECK command tells e-FAQ whether or not to check the spelling of the entry before adding it to a FAQ. All
commands are documented in the e-FAQ authoring help, which can be obtained by submitting an entry with HELP in the
subject line to the authoring mailbox.

Dirty

When a feedback item, FAQ, entry or alias is dirty, it has been modified locally, and changes have not been sent to the server
yet.

e-FAQ Configuration Utility

This application runs on the e-FAQ server. It is used by e-FAQ administrators to configure e-FAQ components:
e FAQ Properties
e Email Addresses for e-FAQ administrators, response mailboxes, email authoring, and others
e Response Mailbox configuration
e SMTP configuration

e-FAQ Knowledge Manager

e-FAQ Knowledge Manager is a web-based application that authors can use to create and manage entries and FAQs.
Authors can also run reports to learn how their entries and FAQs are being used and maintained. See the e-FAQ 2.1
Knowledge Manager online help for more information.

e-FAQ Processor

The processor is the component of e-FAQ that watches for new queries and entries. If it sees a query has arrived, it either
accepts or rejects the query based on several options configurable in the e-FAQ Configuration Utility.

If e-FAQ accepts the query, e-FAQ extracts a configurable number of words and passes the words to Matcher. Matcher
returns zero, one, or more entries that matched the query. If no matches are found, Processor sends an email back to the
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user confirming that the message arrived, and then forwards the query to a human for further manual processing.

If Matcher returns one or more answers, Processor generates a response from one of the response templates. The
response contains the entries that Matcher found. The response also contains a unique response identifier. If the user
replies to the response, e-FAQ will see that the returned response contains a response identifier and forwards the query to a
human for manual processing. Be sure to review the Flow Diagrams later in this document for a more detailed sequence of
events. Several query-processing behaviors are configured in the e-FAQ Configuration Utility.

If Processor sees that an author has created a new entry, it extracts the question/answer pair. It then parses the question
and answer, and attempts perform any other operations specified in the parameters set for that entry. Processor also
performs delete operations and other actions on entries, sending a rejection message if it encounters errors.

Entry
An entry is a question/answer pair submitted by an author to a FAQ. An entry consists of question text and corresponding
answer text and additional control information.
Entries can contain various attributes and parameters that e-FAQ uses to process the entry. These question/answer
portions of the entries are sent in responses. See the e-FAQ™ 2.1 Knowledge Manager online help for more information on
creating entries.

Entry ID
Each new entry is assigned a unique ID number when it is saved in the database. This Entry ID is often specified with other
commands to identify which entry that an operation should be performed on. The Entry ID is included in the confirmation
email sent to the author of the entry.

Entry Object
Data representing an entry in the FAQ. An entry consists of a Question text, its corresponding Answer text and additional
control information.

Entry Objects
Entry objects represent an entry in the FAQ. An entry consists of a Question text, its corresponding Answer text and
additional control information.

Expansion
An expansion is the expanded form of an abbreviation. For example, the word "USA" expands to "United States of America".
The expansion of "USA" is "United States of America".

FAQ Database
An FAQ database is a collection of tables that hold entries and their attributes, such as question, answer, and entry ID.
Matcher compares a query to the entries in the FAQ. You can create entries in the FAQ via the e-FAQ Knowledge Manager
and the email-authoring interface. The FAQ database is created during installation, and you can create new FAQs within the
FAQ database using the e-FAQ Configuration Utility or the e-FAQ Knowledge Manager.
e-FAQ supports SQL Server 7 and MSDE (Microsoft Data Engine) for the FAQ database. MSDE is a special version of SQL
Server designed to be embedded within an application such as e-FAQ. For large companies maintaining multiple FAQs, we
recommend SQL Server 7 because it has a robust set of utilities for managing and backing up databases.

FAQ Object
Represents a FAQ, which consists of configuration data as well as a collection of Entries and Aliases.

Grade Threshold
When performing a query, e-FAQ assigns a grade to each entry. This grade is the number of standard deviations the absolute
score of an entry is above the mean of the absolute scores of all entries. The grade threshold specifies the minimum grade
accepted as result. This number must be in the range 1.0 to 10.0. The default value is 2.0.

IEnumVARIANT

The IEnumVARIANT interface provides a standard mechanism for enumerating a collection. In Visual Basic, the
IEnumVARIANT interface is accessed using the "For Each" language construct. The VB example below demonstrates how
to use IENnUMVARIANT to iterate through all FAQs in a collection:

Private Sub Commandl Click()

Dim objServer As New EFAQCOMAPILib.Server
Dim objFag As EFAQCOMAPILib.FAQ

' connect to the server
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Index

objServer.Connect MainForm.ServerName, "VbTestApp"

''utilize built-in IEnumVARIANT interface to display the name
' of each object in the collection
For Each objFag In objServer.FAQs
MsgBox objFag.Name
Next
End Sub

The IEnumVARIANT interface is hidden and does not appear in Visual Basic's object browser.

For each FAQ, e-FAQ contains an index of all the words contained in question/answer pairs that have been submitted with
entries. e-FAQ parses the words contained in these entries, and calculates weights for those words.

You can configure whether to weigh words more heavily in the question or answer portion of an entry, or you can choose to
weigh them both the same. You can choose to re-index a FAQ at any time using this API, the e-FAQ Configuration Utility or
the e-FAQ Knowledge Manager. e-FAQ will tell pop a message when reindexing is required).

Indexing is necessary when you have changed Tokenize Numbers or Kill Words.

Note:
l Indexing puts a heavy load on your e-FAQ server and may degrade performance during the re-indexing process. l

Indexing

For each FAQ, e-FAQ contains an index of all the words contained in question/answer pairs that have been submitted with
entries. e-FAQ parses the words contained in these entries, and calculates weights for those words.

You can configure whether to weigh words more heavily in the question or answer portion of an entry, or you can choose to
weigh them both the same. You can choose to re-index a FAQ at any time using this API, the e-FAQ Configuration Utility or
the e-FAQ Knowledge Manager. e-FAQ will tell pop a message when re-indexing is required).

Indexing is necessary when you have changed Tokenize Numbers or Kill Words.

Re-Index

For each FAQ, e-FAQ contains an index of all the words contained in question/answer pairs that have been submitted with
entries. e-FAQ parses the words contained in these entries, and calculates weights for those words.

You can configure whether to weigh words more heavily in the question or answer portion of an entry, or you can choose to
weigh them both the same. You can choose to re-index a FAQ at any time using this API, the e-FAQ Configuration Utility or
the e-FAQ Knowledge Manager. e-FAQ will tell pop a message when re-indexing is required).

Indexing is necessary when you have changed Tokenize Numbers or Kill Words.

KillWords

KillWords are words that are ignored when searching for an answer. Note-You must re-index the FAQ if you change this
value once a FAQ contains entries. Be very judicial when specifying killwords. We recommend only to use a few of the very
common "noise" words, such as a, an, the, it, is.

Killword

KillWords are words that are ignored when searching for an answer. Note-You must re-index the FAQ if you change this
value once a FAQ contains entries. Be very judicial when specifying killwords. We recommend only to use a few of the very
common "noise" words, such as a, an, the, it, is.

Matcher

Mean

Noun

Matcher is a Processor sub-component that uses artificial intelligence to match queries with answers (contained in the
entries in a FAQ). Each entry in a FAQ contains a question and an answer. Matcher compares the query to each entry's
question/answer pair and returns the ones that most closely match. Processor then takes a configurable number of
highest-scoring entries and uses them in the response. You can configure some Matcher behaviors in the e-FAQ
Configuration Utility.

The arithmetic average of a collection of numbers, computed by adding them up and dividing by their number.
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Nouns are the names given to persons, places, things, or abstract ideas.

NULL
In C language, NULL denotes an empty object, or an object whose resources have been disposed of. In Java and Visual
Basic, this is equivalent to object = nothing. For example:
If Not objAsyncError.NativeObject Is Nothing Then
' code statements go here
End If
Object
An object encapsulates data and functions that manipulate the data. Objects are accessed through a collection of methods
(functions) that are exposed by an interface.
Query
A query is an email sent to a response mailbox, or a question passed to e-FAQ using the e-FAQ API. E-mail queries contain
a question in the subject line or body.
Query Object
The Query object contains the parameters of a FAQ query. One can specify what FAQs are queried, the question to ask, the
grade threshold and other parameters.
Query Result Object
A query result object represents one row in the result set.
Question
There are two types of questions in e-FAQ. The first is a question sent to a response mailbox. The second type of question
is the question portion of an entry.
Response

One or more entries sent by e-FAQ in response to a Query. Responses are formatted with response templates.

Response Mailbox

An email address to which users send queries. e-FAQ parses queries sent to a response mailbox and tries to match that
query to entries in the FAQ.

Response Template

e-FAQ transforms query result data with a response template to create a customized response for each user. In previous
editions of e-FAQ, response templates were text files that contained substitution fields. Responses were generated using
simple search and replace operations.

Server Round Trips

To transfer data to or from the e-FAQ server, DCOM remote procedure calls (RPCs) are used. RPCs are resource-intensive,
especially if the server is not on the same machine as the client. Each exchange of information (round trip) between client
and server entails marshaling the method arguments for transfer, transferring the data to the server, un-marshalling the data,
invoking the method on the server, marshalling the data to be returned to the client, transferring the data, and un-marshalling
the data.

e When the server is local, the cost of the RPC call is mostly marshalling, un-marshalling and context switch.
e When the server is remote, the time to transfer the data over the network is usually the biggest cost (time-wise).

You should coalesce as much data into one call as is possible, to reduce the number of RPCs required. This dramatically
affects performance. Suppose, for example, that in the context of COM, the time it takes to do an in-process, intra-
apartment as 1. A cross process call (server on same machine as client, but in different processes), takes approximately
3,000 times longer. A call to a remote machine takes at least 30,000 times longer than an in-process call.

Standard Deviation

Standard Deviation is the square root of the variance between numbers. In other words, for any set of numbers, the standard
deviation is the square root of the difference between the mean (average) of the squares of the numbers and the square of
the mean of the numbers.
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Standard deviation evaluates the spread of data. For example, the numbers 3,7,1,17,2 are more spread out (scattered) than
the numbers 5,6,6,7,6. Both sets of data have mean 6, but the first one has higher standard deviation. Low standard deviation
indicates data generated by a consistent process. High standard deviation implies a greater difference between data
elements.

Tokenize Numbers

User

uTC

If tokenization is enabled, e-FAQ considers numbers to be significant when calculating the answer score. For example, you
would want to tokenize a FAQ that contains error messages, so that e-FAQ will consider the numbers important when
searching for an answer. If a user asks, "What is error code 234?", e-FAQ will consider 234 to be a significant word.

If tokenization is disabled, e-FAQ ignores numbers. Suppose that a user submits "I've tried calling 2 times, and they
suggested | email e-FAQ.", the digit "2" would be ignored when searching for an answer.

If you enable or disable tokenization after a FAQ contains entries, you must reindex the FAQ.

An e-FAQ user is someone who sends queries to a response mailbox.

UTC stands for coordinated universal time. UTC is also known as Greenwich Mean Time (GMT), Zulu time, universal time,
and world time. UTC was developed for radio broadcasters whose transmissions can cross multiple time zones and
international date lines. UTC time is maintained by many atomic clocks around the world.

UTC uses a 24-hour system of time notation. "2:00 a.m." in UTC is expressed as 0200, and is pronounced, "zero two
hundred." Fifteen minutes after 0200 is expressed as 0215; thirty-seven minutes after 0200 is 0238 (pronounced "zero two
thirty-eight"). The time one minute after 0259 is 0300. Each new day begins at midnight (0000) pronounced "zero hundred".

To convert UTC to local time, simply add or subtract hours from the UTC time. For persons west of the zero meridian to the
international date line (which includes all of North America), hours are subtracted from UTC to convert to local time. The
table below indicates the number of hours to subtract from local time zones (in North America) to convert UTC to local
time:

To obtain Atlantic Daylight Time, subtract 3 hours from UTC

To obtain Atlantic Standard Time, subtract 4 hours from UTC

To obtain Eastern Daylight Time, subtract 4 hours from UTC

To obtain Eastern Standard Time, subtract 5 hours from UTC

To obtain Central Daylight Time, subtract 5 hours from UTC

To obtain Central Standard Time, subtract 6 hours from UTC

To obtain Mountain Daylight Time, subtract 6 hours from UTC

To obtain Mountain Standard Time, subtract 7 hours from UTC

To obtain Pacific Daylight Time, subtract 7 hours from UTC

To obtain Pacific Standard Time, subtract 8 hours from UTC

To obtain Alaska Daylight Time, subtract 8 hours from UTC

To obtain Alaska Standard Time, subtract 9 hours from UTC

To obtain Hawaii-Aleutian Daylight Time, subtract 9 hours from UTC

To obtain Hawaii-Aleutian Standard Time, subtract 10 hours from UTC

To obtain Samoa Standard Time, subtract 11 hours from UTC

UTC Date and Time Format

The format of a UTC Date/Time is: YYYYMMDDHHmMmss.ss where:
YYYY= Year

MM = Month (00-12)

DD = Day (01-31)

HH = Hour (00-23)

mm = Minute (00-59)

ss = Second (00-59)

.ss = Decimal Second (00-59)

Example: 19990821133500.00

In this example, the date is August 21, 1999. The time is exactly 1335.

72



Verb

A verb declares something about the subject of the sentence to express actions, events, or states of being.

XML
XML stands for Extensible Markup Language. Most of the responses that e-FAQ sends to users are based on response
templates. These templates are XML documents that contain:
e Substitution fields to hold values such as the response recipient's name, the matched entries, and other text.
e Conditional expressions for evaluating and formatting the entries in the response.
o Style definitions to format the responses.
XSL

XSL stands for Extensible Stylesheet Language. e-FAQ response templates may contain one or more embedded XSL style
sheets that transform dynamically generated XML data of the query result or statistics into HTML to be inserted into the
message body. The use of XSL to format dynamic data offers a very high degree of flexibility. For example, you can create
templates that conditionally include or exclude entries based on user defined tags, or only include an abstract of the FAQ
Entry and include a dynamically generated URL that links back to your website where the customer can retrieve the full
answer.

Terms used with SOAP and XML Technology

COM
Microsoft's Component Object Model. The COM specification helps developers create component software that is
compatible with a variety of languages, including C, ADA, Delphi, Java, and Visual Basic.

CIC Module

One of the many applications that make up the CIC server. These applications have names like manager, server, and
services. For example, Queue Manager, Fax Server, and Directory Services are all CIC modules.

Customer Interaction Center (CIC)

Customer Interaction Center is a powerful platform for implementing comprehensive interaction management covering not
only telephone calls and faxes but also e-mail messages, Internet text chats, Web callback requests, and voice over Net
calls. Using Customer Interaction Center, enterprises, contact centers, and service providers can centralize the processing
of all customer interactions and provide a new level of service and consistency.

Denial of Service Attack

Denial of Service (DoS) attacks are attempts to overload a networked computer system so that it crashes, disconnects
from the network, or becomes so overloaded that it cannot respond to legitimate requests.

DTD

Document Type Definition. A DTD defines the XML tags that can be used in an XML document, the order in which tags may
appear, and limited information about data types. A DTD can be part of an XML document or can be referenced as an
external file. The validating XML parser compares the DTD to the XML document and flags any errors. DTDs have been
deprecated in favor of XML Schemas.

Handler

A program built in Interaction Designer that performs some action or actions in response to the occurrence of some event.
A handler is a collection of steps organized and linked to form a logical flow of actions and decisions. Handlers are similar
in structure to a detailed flowchart. Handlers can start other handlers called subroutines. A handler contains only one
initiator step which identifies the type of event that will start the handler.

HTML
Hypertext Markup Language (HTML) is the markup language used to create World Wide Web pages.

IDispatch Interface

The IDispatch interface provides a late-bound mechanism that can be used to access information about the methods or
properties of an object.

Initiator
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The first step in a handler that waits for a specific type of event to occur. When that event occurs, the Interaction Processor
starts an instance of any handler whose initiator is configured for that event. An initiator is a required step that starts a
handler. There can be only one Initiator in a handler. Initiator names describe the kind of event used to start a handler.
Initiators can pass information from the event into variables that can be used within a handler. Subroutine initiators are not
configured to watch for an event. Rather, they start when called from another handler.

Interaction Designer

The CIC graphical application development tool for creating, debugging, editing, and managing handlers and subroutines.

Interaction Processor (IP)

Interaction Processor is the event processing subsystem of Customer Interaction Center that starts instances of handlers
when an event occurs.

lUnknown Interface

Every COM component implements an internal interface named IUnknown. Client applications can use the IlUnknown
interface to retrieve pointers to the other interfaces supported by the component.

Method

A method is a software subroutine that performs some type of data processing on an object in a computer system.
Methods are sometimes called functions. Data can be passed when methods are called to perform work. For example, you
might call a method named GetStockPrice and pass it a stock symbol to receive the current stock price as the return value.

Microsoft SOAP Toolkit

Microsoft's SOAP Toolkit makes it possible for programmers to invoke a web service as easily as invoking a method on an
object. The Microsoft SOAP Toolkit reads in an WSDL file, and dynamically generates COM interfaces for operations
described in the file. It packages method parameters in accordance with WSDL service descriptions.

Namespace

Since XML allows tags and attributes to be defined as needed, name collisions occur when the same name is assigned to a
tag or an attribute, in different databases. For example, a teacher might define an element named "Grade" to represent a
student's score. In the context of an agricultural operation, "Grade" could have a different meaning, as in "Grade A" eggs.

Namespaces resolve collision issues by associating XML attribute and element names with a specific context, or
"namespace”. A namespace is an identifier that helps computer programs determine whether identically named elements
refer to the same type of data. Using namespaces, a program can determine that a data element named "Grade" in the
"Schoolwork" namespace is different from an element called "Grade" in the "EggQuality" namespace.

Notifier

The CIC module that acts as a communication center for all other modules. Notifier listens for events generated by other
modules and notifies other interested modules that the event has occurred. Notifier uses a publish-and-subscribe paradigm.

Package

A SOAP package contains information needed to invoke a web service.

Payload

A payload contains data in XML format that is passed to or from a function. Request payloads contain everything needed to
execute a function, including data and arguments passed as parameters. Response payloads contain the values that are
returned from a function.

Processing Instruction

Processing instructions are read by application-level code (such as parsers) and are used to communicate information
without changing the content of an XML document. For example, <?xml version="1.0"?> is a processing instruction
that indicates that a document conforms to XML 1.0 specifications.

Processing instructions use <?target declaration 2> notation; where target is the name of the application that
should process the instruction, and declaration is an instruction or identifier that is meaningful to the application. In the
above example, xml is a reserved target that identifies XML parsers.

Protocol

A protocol is a set of rules that one computer uses to communicate with another.

Schema
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XML Schema are the successor to DTDs for XML. XML schemas describe method calls, and can recognize and enforce
data-types, inheritance, and presentation rules. A schema can be part of an XML document or can be referenced as an
external file.

SOAP

Simple Object Access Protocol. SOAP is an XML-based protocol that requests or receives information from peer
computers in a decentralized, distributed network. SOAP defines the minimal set of conventions that are needed to invoke
code using XML and HTTP.

SOAP is used to invoke methods on servers, services, components and objects in another computer. SOAP specifies the
XML vocabulary needed to specify method parameters, return values, and exceptions.

TCP/IP

Transmission Control Protocol/Internet Protocol.

Tool
The definition of a single action that can be performed within a handler. This definition includes name, label, runtime
information (DLL and function), possible return codes, and parameters. Tools dragged into a handler become steps in that
handler.

Valid
A valid XML document conforms to a document structure defined by a schema or DTD (Document Type Definition). Valid
documents are well-formed documents that have a DTD or schema applied to them.

Vocabulary
A vocabulary is the set of tags and attributes that are used in an XML document.

Web Service
A web service is a method that can be invoked across the Internet. A web service can perform virtually any data processing
activity, ranging from simple information lookups to complicated business transactions. SOAP is frequently employed to
invoke web services.

Well-Formed
Well-formed documents follow the rules of XML.

WSDL
Web Services Description Language-an XML-based language that defines the functionality offered by a web service and how
to access it. WSDL makes it possible to describe services on CIC so that a worldwide audience can find and use them.
WSDL describes a service, the parameters required to invoke it, and the location of the endpoint where the service can be
accessed.

XML
Extensible Markup Language. XML provides a structured way to define data in plain text format, so that data can be
exchanged between computers.

XSL/XSLT

Extensible Style Language (XSL) is a specification used to transform XML documents into HTML. XSL Transformation
(XSLT) provides similar functionality that transforms XML data into a different XML structure.
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Change Log

The following table lists the changes to the Third-Party Integration Technical Reference since its initial release.

Date

Changes

01-September-2014

Updated documentation to reflect changes required in the transition from version 4.0 SU# to CIC 2015 R1,
such as updates to product version numbers, system requirements, installation procedures, references to
Interactive Intelligence Product Information site URLs, and copyright and trademark information.

07-August-2015

Changed "Lotus Notes" to "IBM Notes".

11-September-2015

Updated documentation to reflect the addition of two CIC client applications, Interaction Desktop and
Interaction Connect, and the removal of Interaction Client .NET edition.

24-April-2017 Updated documentation to reflect the removal of Interaction Client Web Edition and Interaction Client
Mobile Web Edition.
05-May-2017 Applied a new template and reformatted this document

11-September-2017

e Updated Copyright and Trademark Information and cover page.
e Applied Genesys terminology.

24-June-2019

Reorganized the content only, which included combining some topics and deleting others that just had an
introductory sentence such as, "In this section...".
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