
PureConnect®

2019 R3

Generated:

11-September-2019

Content last updated:

18-June-2019

See Change Log for summary of
changes.

Using Active Reports to
Create Reports for

Interaction Reporter

Developer's Guide

Abstract

This document is a reference to author and integrate reports for
Interaction Reporter using ActiveReports 6.1.2814.0.

For the latest version of this document, see the PureConnect
Documentation Library at: http://help.genesys.com/cic.

For copyright and trademark information, see
https://help.genesys.com/cic/desktop/copyright_and_trademark_information.htm.

1

http://help.genesys.com/cic
https://help.genesys.com/cic/desktop/copyright_and_trademark_information.htm

2
3
4
4
8
8
9
9

10
10
13
13
14
15
15
15
16
18
20
21
22
23
25

Table of Contents
Table of Contents
Introduction to Active Reports
Define the Data

Create the Stored Procedures for a Report
Create a report

Create a C# Class in Visual Studio
Conform a Report to Interaction Reporter
Design the Layout

Place the Query Results in the Detail Section
Add a Group Break to a Report
Add a Group Summary
Specify Additional Properties for Report Groups
Add a Subreport

Configure a Report to Appear and Run in IC Business Manager
General and data source information
Stored procedure information
Parameters
Access control

Run a Report
Appendix A: Order of ActiveReport Events
Appendix B: Creating Group Breaks Based on Unbound Data
Appendix C: Properties and Methods
Change Log

2

Introduction to Active Reports
The Active Reports Developer's Guide is a reference to create and integrate reports for Interaction Reporter using ComponentOne
ActiveReports 6.1.2814.0.

The guide assumes that you:
Installed ActiveReports on your development system.
Are familiar with the basic concepts of report creation as illustrated on the ActiveReports help document installed with the
product.

To use this guide, you should be familiar with the following .NET objects:
System.Data.DataSet
System.Data.DataTable

You should also be familiar with these programming concepts in C# .NET objects:
Inheritance
Implementing interfaces

3

Define the Data
The first step in report creation is defining the raw data. The reports in Interaction Reporter retrieve data from the PureConnect
database by using stored procedures. The reports also retrieve some data using IceLib calls combined with database data for
readability and display purposes.

For a report you create, you can use any method to retrieve data as long as the final object can bind to an
ActiveReports.DataSource object. You can combine data from multiple sources in any way that you require and display the
data in a report. For example, you can use:

A DataTable within a DataSet.
A DataTable by itself.
An array of DataRows returned from a DataTable.Select() method.
Any collection of objects with the object properties bound to the text boxes on the report. This includes a collection that
results from a call to a Linq expression.

You can refer to ComponentOne documentation for additional object types.

.NET DataSet objects can have multiple DataTable objects. For example, a stored procedure could execute multiple SELECTs, and
the report could utilize all of them. A report could present summarized and detailed data on the same report or create a main report
that calls a subreport.

Create the Stored Procedures for a Report
You can choose whether to use a stored procedure to source the data for a report. A report typically has the following stored
procedures:

Main procedure to contain all data for the report
Count procedure to return the number of rows that meet the criteria from the @WhereClause. This is the procedure executed
when the Show Count button is pressed in Interaction Reporter.
Sample procedure to allow exploring a small set of data from the parameter screen.

When you create stored procedures, consider the following:
In MS SQL Server, wrap the SELECT statement in an EXEC command. As a best practice, use sp_executesql for better
performance and improved security.
Most shipping reports take @WhereClause and @OrderClause input parameters that the engine passes to the procedure
when the report executes.
You can configure whatever parameters you require for a custom data as long as you pass the parameters when the report
executes.

The following example shows SQL Server stored procedures for the Fax Detail report:

--sprpt_FaxDetail

IF EXISTS
 (SELECT * FROM sysobjects
 WHERE id = object_id(N'dbo.[sprpt_FaxDetail]')
 and OBJECTPROPERTY(id, N'IsProcedure')

 = 1)
 DROP PROCEDURE dbo.[sprpt_FaxDetail]
GO
CREATE PROCEDURE [dbo].[sprpt_FaxDetail](@WhereClause nvarchar(4000),
@OrderClause nvarchar(2048))
AS
SET NOCOUNT ON;
exec(
/* Fax detail activity: */
'SELECT
feh.Siteid,
Sendername,
Direction,
successflag,

4

RemoteCSId,
RemoteNumber,
EnvelopeId,
FaxId,
Direction,
Speed,
CallIdKey,
ProcessingDatetime,
ProcessingDatetimeGmt,
FaxTimeStamp,
EnvelopeTimeStamp,
PortNumber,
Duration,
Speed,
PageCount,
FailureType,
LastName,
FirstName
FROM FaxEnvelopeHist feh
left outer join Individual i on i.icuserid = feh.SenderName '
+ @WhereClause + ' ' + @OrderClause)
go

--sprpt_FaxDetail_samp

IF EXISTS
(SELECT * FROM sysobjects
WHERE id = object_id(N'dbo.[sprpt_FaxDetail_samp]')
and OBJECTPROPERTY(id, N'IsProcedure') = 1)
DROP PROCEDURE dbo.[sprpt_FaxDetail_samp]
GO
CREATE PROCEDURE [dbo].[sprpt_FaxDetail_samp](@ColName varchar(50),
@RecCountSamp integer, @Distinct integer)
AS
SET NOCOUNT ON;
DECLARE @DistinctStr varchar(8)
IF @Distinct = 1
 SET @DistinctStr = 'Distinct'
ELSE
 SET @DistinctStr = ''
exec(
/* Fax detail activity: */
'SELECT ' + @DistinctStr + ' top ' + @RecCountSamp + ' ' + @ColName +
' FROM FaxEnvelopeHist')
go

--sprpt_FaxDetail_count

IF EXISTS
(SELECT * FROM sysobjects
WHERE id = object_id(N'dbo.[sprpt_FaxDetail_count]')
and OBJECTPROPERTY(id, N'IsProcedure') = 1)
DROP PROCEDURE dbo.sprpt_FaxDetail_count
GO
CREATE PROCEDURE [dbo].sprpt_FaxDetail_count(@WhereClause
nvarchar(4000))
AS
SET NOCOUNT ON;
exec('SELECT count(*) from FaxEnvelopeHist ' + @WhereClause)
GO

The following example shows Oracle stored procedures for the Fax Detail report:

--sprpt_FaxDetail

CREATE OR REPLACE PROCEDURE sprpt_FaxDetail
(i_WhereClause IN varchar2
,i_OrderClause IN varchar2
,o_prc OUT sys_refcursor)

5

AS
v_str varchar2(4000) := 'SELECT
feh.Siteid,
Sendername,
Direction,
successflag,
RemoteCSId,
RemoteNumber,
EnvelopeId,
FaxId,
Direction,
Speed,
CallIdKey,
ProcessingDatetime,
ProcessingDatetimeGmt,
FaxTimeStamp,
EnvelopeTimeStamp,
PortNumber,
Duration,
Speed,
PageCount,
FailureType,
LastName,
FirstName
FROM FaxEnvelopeHist feh
left outer join Individual i on i.icuserid = feh.SenderName '
|| i_WhereClause || ' ' || i_OrderClause
;
BEGIN
 dbms_output.put_line(v_str); open

 o_prc for v_str;
 commit;EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('Error in sprpt_FaxDetail

 procedure.');
 DBMS_OUTPUT.PUT_LINE(sqlerrm);
 RAISE;
END;
/

--sprpt_FaxDetail_samp

create or replace PROCEDURE sprpt_FaxDetail_samp
(i_ColName IN varchar2
,i_RecCount IN integer
,i_Distinct IN integer
,o_prc OUT sys_refcursor
)
AS
v_DistinctStr varchar2(8);
v_str varchar2(4000);BEGIN
 IF i_Distinct = 1 THEN
 v_DistinctStr := 'Distinct';
 ELSE
 v_DistinctStr := '';
 END IF;
/* Fax detail activity: */
 v_str := 'SELECT * FROM (SELECT ' || v_DistinctStr ||

 ' ' ||

6

i_ColName ||
 ' FROM FaxEnvelopeHist) WHERE ROWNUM <= ' || i_RecCount
 ; dbms_output.put_line(v_str); open

 o_prc for v_str;
 commit;EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('Error in sprpt_FaxDetail_samp
procedure.');
 DBMS_OUTPUT.PUT_LINE(sqlerrm);
 RAISE;
END;
/

--sprpt_FaxDetail_count

CREATE OR REPLACE PROCEDURE sprpt_FaxDetail_count
(i_WhereClause IN varchar2
,O_Count OUT NUMBER
)
AS
v_str varchar(4000) := 'SELECT count(*) from FaxEnvelopeHist ' ||
i_WhereClause;
BEGIN
 dbms_output.put_line(v_str);
 execute immediate(v_str) into o_count;
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('Error in sprpt_FaxDetail_count
procedure.');
 DBMS_OUTPUT.PUT_LINE(sqlerrm);
 RAISE;
END;
/

7

Create a report

Create a C# Class in Visual Studio
1. Open a new instance of Visual Studio.
2. Add a new item.
3. Select ActiveReports 6 (code-based) and name the report.
4. Click Add to add the report to your project and open it in design view. By default, your report contains a page header section, a

detail section, and a page footer section.

8

Conform a Report to Interaction Reporter
Add the following references from the location of your installation of IC Business Manager:

i3trace_dotnet_reader_interop-w32r-1-2.dll
i3trace_dotnet_reader_interop-w32r-1-4.dll (If you have it.)
ININ.Common.dll
ININ.Reporting.Common.dll
ININ.Reporting.Historical.Engine.Module.dll
ININ.Reporting.Historical.Engine.Objects.dll
ININ.Reporting.Historical.Engine.Reports.dll
ININ.Reporting.MetaDataAPI.dll

You must also complete the following to conform your report to Interaction Reporter:
In the report’s code, inherit from ReportBase to access standard report page header, footer, styles, and several useful utilities
(Refer to "Appendix C: Properties and Methods").
Add the IReport interface to the inheritance chain. Implement at least IReport’s GetData to retrieve your data. This method is
executed when the report is executed from the parameters page.
If you would like to override the GetCount and GetSample methods, you can. These methods are implemented in ReportBase
using information from the report metadata you enter in Interaction Administrator.

Because the ReportBase is a master report, you cannot change the report header, page header, report footer, or page footer
sections. By definition of a master report in ActiveReports, a custom report is the detail and additional groups you add between
these sections. The following properties on ReportBase have controls that you can change:

PHeader is the DataDynamics.ActiveReports.PageHeader with get and set capability.
GetReportHeader1 returns the DataDynamics.ActiveReports.ReportHeader section. You can override the title by using this
property:

GetReportHeader1.Controls["txtReportTitle"].Text

 = "My Custom title";
GetReportHeader1.Controls["txtSubtitle"].Text

 = "My Custom title";

The following example is code from the Fax report. In this example, the:
GetSQLFragment() is the method to return the WHERE clause as a string based on the ParameterValue data stored in the
GetReportData instance of ReportData.
ReportTransaction is a class located in ININ.Reporting.Historical.Engine.Objects that wraps the methods to retrieve data from
the database.
StartQueryTimer() method and StopQueryTimer() method start and stop the timer and log this metric in the ICBusinessManager
log file.

Design the Layout
To design the layout of a report, you can:

Place the Query Results in the Detail Section
Add a Group Break to a Report
Add a Group Summary
Specify Additional Properties for Report Groups
Add a Subreport

9

Every column returned by your query is added to the ActiveReport.Fields collection. You can add custom data to this field collection
that could serve you later to create complex calculations or just to handle a better layout.

Select the data from your query or from your custom data that you would like to display in the body of the report. The data
generates one instance of the Detail section for each record from your query.

Place textboxes in the detail section to map to each Field. Select the Datafield property of the textbox. Enter the exact name or alias
of the column from your query result that you want to display.

The following illustration shows adding the Faxid column as a Datafield property.

Add a group break to a report as needed. A group break uses a field from the query.
1. Select any section on the report. Right-click and select Insert > Group Header/Footer.

Place the Query Results in the Detail Section

Add a Group Break to a Report

10

Two new sections appear on the layout that correspond to the header and footer of the new group.

2. Select the group header, right-click and select Properties. Name the group and set the DataField property to map the column
from your data that drives the group breaks in the report. Set the RepeatStyle property to OnPage to repeat all elements in this
section on each page.

3. Add elements (for example, labels or textboxes) to the group header. In the FaxDetail report example, the SenderName group
contains labels that serve as titles for each column in the detail section.

11

4. Continue to add as many group breaks as the report requires. For example, create a group break for SiteId, UserId, and Date.

12

You can place summarized data in the group header or footer by using the data from the detail section.
1. Set the DataField property to the field name on which you base the summary.
2. Set the SummaryFunc property to the type of arithmetic aggregation function that applies to the summary.
3. Set the SummaryGroup property to the group header name to which this summary relates.
4. Set the SummaryRunning property to Group if the group footer contains the summary field. Set the property to None if the

group header contains the summary.
5. Set the SummaryType propertyto SubTotal for summaries placed in groups.

Use the KeepTogether property to indicate whether a section prints in its entirety on the same page. Set the property to:
True to print the section on the same page without any page breaks. If the section is too large for the current page or can fit
fully on the next page, the KeepTogether property is ignored.
False to print the section across two or more pages.

Use the GroupKeepTogether property to indicate whether the group header and footer sections print as a single block on the same
page. Set the property to:

None to split the block across pages. The property defaults to None.
All to print the block on the same page without any page breaks. If the block does not fit on one page, ActiveReports prints the
block across two or more pages. Use the FirstDetail property to prevent any widowed group header sections. The group header
always prints with at least one detail record.

Add a Group Summary

Specify Additional Properties for Report Groups

13

You can add one or more subreports to the main report. Limit the use of subreports in a repeating section because this consumes
memory and can result in an Out of Memory error. To use a subreport in a repeating section, instantiate the subreport in the
ReportStart event.
1. From the toolbox, drag a subreport object into the main report and use the name subRptSummary.

2. Add an ActiveReports class to the main report folder and use the name SubReportSummary.
3. In the main report, declare the constructor.

4. In the ReportStart event of the Main report, initialize the subreport.

5. In the Format event of the section where you place the subreport, set the data source for the subreport. Use a table from the
GetData method of the main report that corresponds to the data to display on the subreport. You can use a complete table or
part of a table based on the current value currently being iterated in the main report.
The following example uses a complete table for the subreport:

Add a Subreport

14

Configure a Report to Appear and Run in IC Business
Manager
You configure a report in Interaction Administrator so that you can run the custom report from Interaction Reporter in IC Business
Manager. You can add the report to an existing category or create a category in Interaction Administrator. After you add the report
to a category, you can:

Specify general report and data source information
Add stored procedure information, if your report requires a stored procedure
Add and configure parameters
Set access control

General and data source information
The following illustration shows the general report information and the data source information for the Fax Summary report.

Stored procedure information
The following illustration shows the stored procedure information for the Fax Summary report.

15

Parameters
A report can filter data by using parameters (for example, a date range). Interaction Reporter provides parameters that you can add
to a report.

You can create a parameter based on classes. For example, to create a Date or a Time parameter, use the following class:
ININ.Reporting.HistoricalEngine.Module.Parameters.DateTimeRange.

The following illustration shows the Assembly Name and the Class Name for the Date parameter in the Fax Summary report.

The following illustration shows the User Control Assembly Name and the User Control Class Name for the Date parameter in the
Fax Summary report.

16

The following table lists the assembly names and class names for parameters available in Interaction Reporter.

Name class_name user_control_class_name

Group Order ...ViewModels.AnalyzerKeywordSections ...Views.DualListSelector

Interval ...ViewModels.AnalyzerScoringInterval ...Views.ComboBoxParameter

Group Order ...ViewModels.AnalyzerScoringSections ...Views.DualListSelector

ACD Logged In ...ViewModels.Boolean ...Views.ComboBoxParameter

Group Report by ...ViewModels.CalibrationGroupBy ...Views.ComboBoxParameter

Calibration Only ...ViewModels.CalibrationOnlyYesNo ...Views.ComboBoxParameter

Call Type ...ViewModels.CallType ...Views.ComboBoxParameter

Date Time Range ...ViewModels.DateTimeRange ...Views.DateTimeRange

Period Type ...ViewModels.DialerInterval ...Views.ComboBoxParameter

Workgroup Queue ...ViewModels.DistributionQueue ...Views.TextBoxParameter

Call Duration ...ViewModels.Duration ...Views.Duration

Display Legends ...ViewModels.FormattingYesNo ...Views.ComboBoxParameter

Interaction Direction ...ViewModels.InteractionDirection ...Views.ComboBoxParameter

Media Type ...ViewModels.InteractionType ...Views.MediaType

Process ...ViewModels.IpaProcess ...Views.DualListSelector

Process Status ...ViewModels.IpaProcessStatus ...Views.ComboBoxParameter

Line ...ViewModels.LineComboBox ...Views.ComboBoxParameter

Subtotal By ...ViewModels.LineGroupBy ...Views.MultiCheckbox

Line Group ...ViewModels.LineGroupComboBox ...Views.ComboBoxParameter

Media Type ...ViewModels.MediaType ...Views.MediaType

Top N Results ...ViewModels.NumericUpDownBase ...Views.NumericUpDown

Date Range ...ViewModels.OptimizerDateRange ...Views.OptimizerDateRangeYear

17

Date Time ...ViewModels.OptimizerDateRangeMonth ...Views.OptimizerDateRangeMonth

exception ...ViewModels.OptimizerFilterViewModel ...Views.OptimizerFilterView

GroupBy ...ViewModels.OptimizerGroupByComboBox ...Views.ComboBoxParameter

Interval ...ViewModels.OptimizerIntervalComboBox ...Views.ComboBoxParameter

Order By ...ViewModels.OptimizerOrderByViewModel ...Views.OptimizerOrderByView

Target ...ViewModels.OptimizerTargetViewModel ...Views.NumericUpDown

Time zone ...ViewModels.OptimizerTimeZoneComboBox...Views.ComboBoxParameter

Target Answered Service Level Percentage...ViewModels.Percentage ...Views.NumericUpDown

Questionnaire Name ...ViewModels.QuestionnaireName ...Views.DataDrivenSelection

Interval Configuration ...ViewModels.QueueInterval ...Views.ComboBoxParameter

Group Order ...ViewModels.QueueSections ...Views.DualListSelector

Media Type ...ViewModels.RecorderMediaType ...Views.MediaType

Scheduling Unit ...ViewModels.SchedulingUnitViewModel ...Views.SchedulingUnitView

Service Level Format ...ViewModels.ServiceLevelFormat ...Views.ComboBoxParameter

Status ...ViewModels.Status ...Views.ComboBoxParameter

Report Flag ...ViewModels.StringParameter ...Views.TextBoxParameter

Target Service Level Calculation ...ViewModels.TargetAnsweredCalc ...Views.ComboBoxParameter

User ...ViewModels.User ...Views.AutoCompleteComboBox

Last Name ...ViewModels.UserLastName ...Views.AutoCompleteComboBox

Recorded IC User ...ViewModels.UserList ...Views.UserList

Group Order ...ViewModels.WrapUpSections ...Views.DualListSelector

Contacted ...ViewModels.YesNo ...Views.ComboBoxParameter

For the parameters listed in the above table:
Use ININ.Reporting.Historical.Engine.Module as the assembly name.
Replace … in the class_name and user_control_class_name with
ININ.Reporting.Historical.Engine.Module.Parameters.

Access control
You can set the report to use access control. The access control for a report follows the same rules that Interaction Administrator
uses for access control in other products.

The following illustration shows that the Fax Summary report requires access control.

18

The following illustration shows access control for Interaction Reporter reports in Interaction Administrator.

19

Run a Report
You can visualize, save filters, and export a report to different formations. Once you configure a report in Interaction Administrator,
you can launch the report for Interaction Reporter in IC Business Manager.

The following illustration shows the Fax Summary report running in IC Business Manager.

20

Appendix A: Order of ActiveReport Events
Events typically occur in the following order:

ReportStart Event: Execution begins and validates any change made to the report structure.
DataInitialize Event: Any access to data source properties could raise this event. Data source is opened.
FetchData Event: This event occurs just after each row is read from the Data Source but before it goes to the report. If no data
is returned from your procedure, the NoData event is raised.

Important!
The DataInitialize and FetchData events are the only events in which the Fields collection should ever be referenced. On
the DataInitialize event, you can add new fields to the collection. On the FetchData event, you can add the custom data
to your field.
Depending on the type of fields or properties set on the report, certain pages might not render completely until all data
is available. For example, a summary field located on a group header. ActiveReports delays rendering this particular
group header until all data is available for the calculation.

Section Events
Format Event: This event occurs after the data is loaded and bound to the controls within the section. Use this event to set
or change the properties of a control or load subreport controls with subreports.

When CanGrow or CanShrink properties are set to true, the growing and shrinking of controls contained in this
section, and the section itself, takes place in this event. Thus, the height of a control or section cannot be obtained
in this event.

BeforePrint Event: This event occurs just before ActiveReports renders the section to the canvas. Use this event to resize a
control or get an accurate height of the section or control. You may resize a control in this event but you cannot resize the
section itself.

21

Appendix B: Creating Group Breaks Based on Unbound Data
In Interaction Reporter, the page header is inherited from the ReportBase and is not accessible while designing your report. You can
add an additional page header by creating a group break based on data that is common to the entire report. You can create this
common data by adding a custom field to the Fields collection.

On the DataInitialize event, add a new field called customPageHeader to the Fields collection as follows:

private void UserProductivity_DataInitialize(object sender, EventArgs e)
 {
 this.Fields.Add("customPageHeader");
 }

On the FetchData event, add the data to this field. The idea is to have the same data for every row so that we can create a break
group on this common data and create a level that serves as another page header.

private void UserProductivity_FetchData(object sender, FetchEventArgs eArgs)

 {
 //For each row, add data to the CustomPageHeader field
 this.Fields["customPageHeader"].Value = "pageheadergrouping";
 }

In this example, in addition to the fields that map each column returned by your query, the Fields collection now includes the
CustomPageHeader field. The data for each row stored in the CustomPageHeader field is the pageheadergrouping string. You can
now create a group break based on this unbound data.

22

Appendix C: Properties and Methods
The following table lists some of the properties of ReportBase that you will find usefull. The ReportBase inherits from
DataDynamics.ActiveReports.ActiveReport.

Property Name Scope Returns Description

SessionService public,
get ININ.Cafe.Interface.Connectio

n.IICSessionService

Provides access to CIC session variable, which is
necessary to make other IceLib calls

GetReportData public,
get, set

ININ.Reporting.Historical.Engine.Obje
cts.ReportData

The ReportData object with parameters completed from the
Parameters page

WhereClause public,
get, set

String String that can be used to hold the result of
ReportData.GetSQLFragment()

ReportDataSet public,
get, set

System.Data.DataSet Used to house the results of whatever method is used to
get data for the report.

GetReportRecordCountpublic,
get

int Returns the count of the records in the primary table in the
ActiveReport’s DataSource property

HasRecords public,
get

bool Returns true or false depending if the results from
GetReportRecordCount > 0

LinkedReport protectedININ.Reporting.Historical.Engine.Obje
cts.ReportData

The ReportData object for a report linked to the main report
via a hypertext link.

GetPageFooter public,
get

DataDynamics.ActiveReports.Section Access to the PageFooter, pageFooter, and the controls
within it

GetPageHeader public,
get

DataDynamics.ActiveReports.Section Access to the PageHeader, pageHeader, and the controls
within it

GetReportHeader1 public,
get

DataDynamics.ActiveReports.Section Access to the ReportHeader, reportHeader1 and the
controls within it

ElapsedQueryTime public,
get

System.TimeSpan Holds the time the query took to execute

The following table lists some of the methods of ReportBase that you will find usefull. You can override almost all of these
methods.

Name Scope Retu
rns

Parameters Description

UpdateProgress protectedvoid None or increment Updates the progress bar as the report runs. Should be called from
the Detail section, typically

StartQueryTimerprotectedvoid None Starts the query timer

StopQueryTimer protectedvoid None Stops the query timer

FixHeights protectedvoid Array of
DataTynamics.ActiveReports.A
RControl

Iterates through the controls passed and adjusts each one’s height
to the tallest control in the collection.

The following table contains some of the utilities that you will find useful in ININ.Reporting.Common.ReportCommonUtils. These
utilities are all public static so they can be called without an instantiated object reference.

23

Name ParametersReturns Description

ToString object String A save conversion of any object to a string; accounts for null values

FixSQLString String String Corrects illegal strings found in SQL statements before processing them

IsNumeric Object bool Determines if a value can be safely converted to a number; accounts for null values

SafeConvertToInt32 Object Int32 Safely converts any object to a Int32 value; accounts for null values

SafeConvertToInt64 Object Int32 Safely converts any object to a Int64 value; accounts for null values

SafeConvertToDouble Object Double Safely converts any object to a Double value; accounts for null values

SafeConvertToDateTimeObject DateTi
me

Safely converts any object to a DateTime value; accounts for null values

ConvertFromGMT Object DateTi
me

Checks for a valid date then returns the date converted from GMT to the local client
machine’s time

The following table contains some of the utilities that you will find useful in
ININ.Reporting.Historical.Engine.Objects.ReportEngineUtils. These utilities are all public static so they can be called without
an instantiated object reference.

Name Parameters Returns Description

GetParameterValuesByFriendlyKeyReportData, string IEnumerable<Param
eterValueDataBase
>

Gets the parameter entered by the user on the
Parameters screen based on the FriendlyKey of the
parameter

MillisecondsToHHMMSS Object, bool (include
milliseconds or not)

String Takes the total millisecond and returns a string in the
format: HH:MM:SS

GetSubtraction Object (first addend),
object (second
addend)

Double Safely subtracts values; null values accounted for

GetDivision Object (numerator),
object (denominator)

Double Safely performs a division; null values, invalid strings
and division-by-zero accounted for

NegativeDisplay Object String Safely formats a number to display as a negative
number; null values and invalid strings accounted for

24

Change Log
The following table lists the changes to the Active Reports Developer's Guide since its initial release.

Change Log
Date

Changed...

01-August-
2014

Initial version.

01-January-
2015

Corrected title from Interactive Reporter to Interaction Reporter. Updated copyright and trademark information.

14-July-
2015

Updated cover page and screen shots for rebranding.

23-January-
2018

Conversion to HTML.

08-February-
2018

Rebranding terminology.

18-June-
2019

Reorganized the content only, which included combining some topics and deleting others that just had an
introductory sentence such as, "In this section...".

25

	Table of Contents
	Introduction to Active Reports
	Define the Data
	Create the Stored Procedures for a Report

	Create a report
	Create a C# Class in Visual Studio
	Conform a Report to Interaction Reporter
	Design the Layout
	Place the Query Results in the Detail Section
	Add a Group Break to a Report
	Add a Group Summary
	Specify Additional Properties for Report Groups
	Add a Subreport

	Configure a Report to Appear and Run in IC Business Manager
	General and data source information
	Stored procedure information
	Parameters
	Access control

	Run a Report
	Appendix A: Order of ActiveReport Events
	Appendix B: Creating Group Breaks Based on Unbound Data
	Appendix C: Properties and Methods
	Change Log

