
PureConnect®

2020 R2

Generated:

05-May-2020

Content last updated:

20-June-2019

See Change Log for summary of
changes.

Interaction ScriptAssist for
Oracle Service Cloud

Technical Reference

Abstract

This document describes Interaction ScriptAssist for Oracle Service
Cloud, a tool that creates scripted screen pops used in the PureConnect
integration to Oracle Service Cloud customer relationship management
(CRM) services.

For the latest version of this document, see the PureConnect
Documentation Library at: http://help.genesys.com/cic.

For copyright and trademark information, see
https://help.genesys.com/cic/desktop/copyright_and_trademark_information.htm.

1

http://help.genesys.com/cic
https://help.genesys.com/cic/desktop/copyright_and_trademark_information.htm

2
3
4
4
4
5
6
6
8
8
8
9

10
10
10
10
11
12
12
12
21
29
37
37
37
38
38
38
39
39
41
41
43
45
45
45
48
48
50
52
52
52
53
54
54
56
56
57
57
58
58
59

Table of Contents
Table of Contents
Features of Interaction ScriptAssist for Oracle Service Cloud
ScriptAssist start page

Basic page elements
Template scripts
Edit a script

ScriptAssist editor page
Basic page elements

Basic features of ScriptAssist
Basic node types (objects)
Script toolbars
Special node types (operations)

Basics of scripts in ScriptAssist for Oracle Service Cloud
Set preferences for Interaction ScriptAssist

Options | CIC Connection tab
Options | Oracle Service Cloud Connection tab
Use Advanced Mode

Basics of building scripts
Use the templates

PopContactByANI
PopIncidentByRefNo
PopNewIncidentWithContactByANI

Use existing scripts
Create a new script
Open a server script

Use ScriptAssist for Oracle Service Cloud
Export a script to an XMLfile
Import a script in an XML file
Save a script
Add a node to a script
Delete a node from a script
Configure an object node
Understanding and configuring node properties
Events that objects can handle
Special node types (for script operations)

Use a Server Search node
Use a Get Properties node
Use a Run Report node

Use a Conditional node
Order of script node execution

Linear execution with a single root node
Branched execution with an additional root node
Branched execution with a conditional node

Configure custom actions
Enable Interaction Attendant to use the template script

Enable a workgroup to use the template script
Assign default values to script parameters
Assign the screen pop script to a workgroup queue

Summary of steps and results
Customization points for Interaction Designer

Handle the incident screen pop script for routed interactions
Change log

2

Features of Interaction ScriptAssist for Oracle Service Cloud
PureConnect's Interaction ScriptAssist for Oracle Service Cloud (ScriptAssist) allows you to use the objects, properties, and events
in the Oracle Service Cloud Connect Web Services for SOAP application programming interface along with the Oracle Service Cloud
Desktop Add-Ins application programming interface to create screen pop scripts simply by placing objects onto a workspace and
adjusting their properties and event handlers.

3

ScriptAssist start page
The first time you start ScriptAssist, you see the start page.

Basic page elements
The menu bar (1):

On the File menu, you can create new scripts, open existing scripts on your server, import a script from an XML file, and do
related tasks. On the Tools menu, you can configure your copy of ScriptAssist to work with your IC server and set other
options.

The Recent Scripts section (2):

This shows a list of recently used scripts on your IC server. In the figure above, this area is blank because when you start
ScriptAssist for the first time, you have not yet created any scripts.

The Template Scripts section (3):

This shows a list of templates used to create scripts for common tasks. The ScriptAssist package includes these scripts.

Template scripts
ScriptAssist comes with several bundled script templates. You can use these templates as a starting point and then modify them
for your own specific needs:

PopContactByANI:

This template creates a script that searches the server for a contact record and then opens the record for editing.

PopIncidentByRefNo:

This template creates a script that searches the server for a specific incident record and then opens the record for editing.

4

PopNewIncidentWithContactByANI:

This template creates a script that searches the server for a specific contact record and then creates an incident based on
the record.

Edit a script
Following are the basic options for editing a script:

On the right of the screen is a box called Template Scripts. To create a script starting with a template. For more information,
see Use the templates.
Below the Recent Scripts section is a link to open an Existing Script. Existing Scripts are XML files on the network. You will
browse to the location of those scripts. For more information, see Use existing scripts.
Below the Recent Scripts is a link to create a New Script. This is used when you want to create a script from scratch. For more
information see Create a new script.
Another option is to use the File menu and select Open Server Script. This will cause a connection to the server. For more
information, see Open a server script.

Note:
When ScriptAssist starts, it checks to see if the Oracle Service Cloud client is installed on your computer. In particular, it looks
in your %appdata%\RightNow_Technologies\<name of your site>. In this folder, the Oracle
Service Cloud client installs files needed for ScriptAssist to work properly. ScriptAssist will not work unless you previously
installed and set up the Oracle Service Cloud client on your computer.

5

ScriptAssist editor page
Once you have chosen one of the 4 options above you will open the editor page. If you have not previously connected to a site you
will get a pop-up that tells you that you must connect to a site, click OK. Then enter the Site Name. The Site Name is the Oracle
Service Cloud interface name.

Basic page elements
The Site Information section (1):

This section shows the Oracle Service Cloud site you have selected. The Choose different site link lets you change to a
different site.

The Object section (2):

This section lists the basic node types that you can use in your script. By clicking the Plus (+) sign to the left of each type,
you see a list of its properties. When you highlight a property, ScriptAssist displays its description in the description section
(3). For more information, see "Basic node types (objects)" in Basic features of ScriptAssist.

The description section (3):

This displays a description of the node type or property highlighted in the Object section (2). The information comes from
Oracle Service Cloud's own API documentation.

The Script Creation toolbar (4):

This contains buttons for script-editing operations, such as adding nodes, deleting nodes, and exporting a script to XML.
This also has buttons for inserting special node types. For more information, see "Script toolbars" and "Special node types
(operations)" in Basic features of ScriptAssist.

6

The Script Creation workspace (5):

This section displays a tree diagram of the script you are currently editing. Double-click script nodes to do further
operations on them.

7

Basic features of ScriptAssist
Following are the basic features of Interaction ScriptAssist for Oracle Service Cloud. For how-to information, see Basics of scripts
in ScriptAssist for Oracle Service Cloud.

Basic node types (objects)

ScriptAssist lets you add script actions that use these standard Oracle Service Cloud record types:
Organization: This is a node type that is used to create, edit, and delete organization records in your screen pop. For more
information, see the IOrganization section of your Oracle Service Cloud documentation.
Contact: This is a node type that is used to create, edit, and delete contact records in your screen pop. For more information,
see the IContact section of your Oracle Service Cloud documentation.
Incident: This is a node type that is used to create, edit, and delete incident records in your screen pop. For more information,
see the IIncident section of your Oracle Service Cloud documentation.
Answer: This is a node type that is used to create, edit, and delete answer records in your screen pop. For more information,
see the IAnswer section of your Oracle Service Cloud documentation.
Opportunity: This is a node type that is used to create, edit, and delete opportunity records in your screen pop. For more
information, see the IOpportunity section of your Oracle Service Cloud documentation.
Task: This is a node type that is used to create, edit, and delete task records in your screen pop. For more information, see the
ITask section of your Oracle Service Cloud documentation.
Quote: This is a node type that is used to create, edit and delete quote records in your screen pop. For more information, see
the IQuote section of your Oracle Service Cloud documentation.
Prod2Quote: This is a node type that is used to create, edit and delete product records that were used in quotes in your screen
pop. For more information, see the IProd2Quote section of your Oracle Service Cloud documentation.
Chat: This is a node type that is used to create, edit and delete chat records your screen pop. For more information, see the
IChat section of your Oracle Service Cloud documentation.

Note:
For more information about these node types, see your Oracle Service Cloud Desktop Add-Ins documentation.

Script toolbars
After the user selects a script from the start page, ScriptAssist loads the script for editing. ScriptAssist then displays the script
toolbars. ScriptAssist displays these toolbars only when a script is open for editing.

From these toolbars, you can:
Add an object node to the script after the currently selected node.
Delete the currently selected node from the script.
Save the current script to the IC server.

8

Export the current script to an XML file for backup.
View the current script in XML code to analyze its operation.
Insert a Get Properties node after a Saved event to copy one or more saved properties for use later in the script.
Insert a Server Search node at the current script position to search the server for specific answers, contacts, incidents,
opportunities, or organizations.
Insert a Run Report node to run a predefined report from the Oracle Service Cloud server.

Special node types (operations)

ScriptAssist lets you script specially defined operations. The following types (available from the script toolbar) represent special
nodes:

Get Prop: After a Save action, this copies values you select and passes them to any subsequent nodes in your script. For
example, the user might save a new customer record. The GetProperties node could then obtain the newly defined customer ID
and pass that value to an Incident node that occurs later in the script.
Server Search: This searches the Oracle Service Cloud site through the Connect Webservice SOAP API for records based on
criteria you enter in the dialog box.
Run Report:This causes the script to run a report defined in the Oracle Service Cloud site. Specify the ID of the report. For more
information, see Use a Run Report node.
Conditional: This is a way to set up a True/False condition. You are able to define criteria based on Equal, Not Equal, Greater
Than or Less Than. Then determine what to do if the condition is True and what to do when the condition is False.

Note:
For more information about these Oracle Service Cloud node types, see your Oracle Service Cloud Desktop Add-Ins
documentation. Also, be aware that Oracle Service Cloud refers to the ServerSearch node simply as "Search" and to the Run
Report node as "RunReport." Oracle Service Cloud does not use the GetProperties node type.

9

Basics of scripts in ScriptAssist for Oracle Service Cloud
Before you use Interaction ScriptAssist for Oracle Service Cloud, Genesys recommends that you configure it to connect both with
your IC server and with the Oracle Service Cloud server.

Set preferences for Interaction ScriptAssist
Basics of building scripts
Use the templates
Use existing scripts
Create a new script
Open a server script

Set preferences for Interaction ScriptAssist
Before you create or edit scripts, set preferences for ScriptAssist to work with your IC server and with the Oracle Service Cloud
server. You set preferences in the Options dialog box, which has two tabs discussed in the following sections.
1. Click Tools on the menu.
2. Choose Options.

On the CIC Connection tab, you can:
Enter your CIC server user ID and password (1).
Enter the name of your CIC server (1).
Test your connection to the CIC server (2). The Test Connection button causes ScriptAssist to try to establish a connection
with the CIC server. If the logon information is incorrect or if there are network problems, the connection fails and you can
attempt to diagnose the problem.
Tell ScriptAssist always to use the CIC server and logon information that you provided on this tab (3).

The Always use this connection check box makes ScriptAssist's start page show a list of scripts on the CIC server you named. Edit
these scripts simply by clicking their names in the list. When you save scripts, ScriptAssist automatically populates the Save dialog
box with your CIC server and logon credentials. If you do not select this check box, then ScriptAssist does not use the logon
credentials.

Options | CIC Connection tab

Options | Oracle Service Cloud Connection tab

10

On the Oracle Service Cloud Connection tab, you can enter the name of the site to use to load the Oracle Service Cloud Desktop
Add-Ins API. If you do not enter the site name, then when Oracle Service Cloud opens a script, it will display a dialog box requesting
the site name.

Note:
The >Advanced Mode for the Oracle Service Cloud Connection was added to allow the ability to specify where the Addin
assembly files are located. This is required for customers running the November '11 (RightNow) and later site versions of
Oracle Service Cloud.

Select the Use Advanced Mode check box. Then, browse to where the Addin assemebly DLL's are located.

For Windows 7/Server 2008 machines, the files should be here:

C:\Users\<user>\AppData\Roaming\RightNow_Technologies\<site>\<build
number>\AddInPipeline\AddInViews\RightNow.AddIns.AddInViews.dll
For older OS's (XP/Server 2003), the files should be here:

Use Advanced Mode

11

C:\Documents and Settings\<user>\ApplicationData\RightNow_Technologies\<site>\<build
number>\AddInPipeline\AddInViews\RightNow.AddIns.AddInViews.dll

Note:
These locations could change, depending on any change in structure as new versions of Oracle Service Cloud are released.

Once the files have been specified, click OK.

Basics of building scripts
1. The ScriptAssist GUI interface shows each action as an object.
2. When saving the scripts, you can save them in XML format to a network drive or a local drive. Or you can save directly to the

CIC server.
3. In order to run, the script it must be saved to the CIC server.

Use the templates
To use a template, simply click the name of the template you want to use. After making the changes to the template, click File >
Save to Server. You can then give it a new name or use the template name. You will then also set the server to save it to as well as
the user name and password.

For more information about the templates, see the following:
PopContactByANI
PopIncidentByRefNo
PopNewIncidentWithContactByANI

The PopContactByANI template creates a script that searches the server for a contact record and then opens the record for editing.

When you click the Template Script PopContactByANI, this window opens.

PopContactByANI

12

The first box is the ServerSearch. This ServerSeach searches against the Contact list for the Phone Number of the current
interaction. The value of the {IVR_Contact_ID} comes from the IVR and the ID (or IDs) of the contact (or contacts) will be set to
the Query_Contact_ID attribute.

The Next Object tab is for telling the script what to do next. In this case, it is going to the Conditional object.

13

Next is the Conditional object.

14

The Condition above states that: If the count of Contact Id = 1. This means that one record was found in the search.

15

The True Action is: Then pop the Contact information.

The False Action is: Else pop the Contact information. At first glance this seems to be doing the same thing whether True or False,
but as you see in the next screen shot there is a Contact object if True and a different Contact object if False. These finish off the
Then and Else of the condition.

16

On the Contact object of the True side it is saying pop the record as an Edit record. It has found the Contract record for the person
on the phone and it is popping it as an edit form.

17

It is using the ID as the matching field.

There are no Events chosen.

To have an Event happen after the action, click the Handle Event checkbox and the options become available. You can then choose
what happens when the evet is fired from Oracle Service Cloud. These events come from the workspace record in Oracle Service
Cloud.

18

On the False side it is saying to pop a New record for the Contact form. This is because it did not find the contact in the current
19

Contact data and needs to create a new Contact.

It uses the ID from the call as the ID for this new record.

There are no Events chosen.

Summary of the script:
1. Gets the ANI from the IVR.
2. Looks in the Contact data for a match to the caller.
3. If it finds a match it sends that information to the Oracles Service Cloud client and pops the contact on the screen.
4. If it doesn't find a match it teslls Oracle Service Cloud client to pop a new Contact record.

20

The PopIncidentByRefNo template creates a script that searches the server for a specific incident record and then opens the record
for editing.

When you click the Template Script PopIncidentByRefNo, this window opens.

The first box is the ServerSearch. This ServerSearch searches against the Incident objects for the Reference Number of the current
interaction. The value of the {IVR_Incident_ID} comes from the IVR and ID of the interaction will be set to the
Query_Incident_ID attribute.

PopIncidentByRefNo

21

The Next Object tab is for telling the script what to do next. In this case, it is going to the Conditonal object.

Next is the Conditional object.

22

The Condition above states that: If the count of Incident ID = 1. This means that one record was found.

23

The True Action is: Then pop the Incident information.

The False Action is: Else pop the Incident information. At first glance, this seems to be doing the same thing whether True or False,
but as you see in the next screen shot there is an Incident object if True and a different Incident object if False. These finish off the
Then and Else of the condition.

24

On the Incident object of the True side, it is saying pop the record as an Edit record. So it has found the Incident record for the
person on the phone and it is popping it as an edit form.

25

It uses the ID as the matching field.

There are no Events chosen.

To have an Event happen after the action, click the Handle Event checkbox and the options become available. You can then choose
what happens when the evet is fired from Oracle Service Cloud. These events come from the workspace record in Oracle Service
Cloud.

26

27

On the False side, it is saying to pop a New record for the Incident form. This is because it did not find the contact in the current
Incident data and needs to create a new Incident.

Since it did not find a contact, there is nothing passed to the new record.

There are no Events chosen.

Summary of the script:
1. Gets the ANI from the IVR.
2. Looks in the Incident data for a match to the caller.
3. If it finds a match it sends that information to the Oracles Service Cloud client and pops the Incident on the screen.
4. If it doesn't find a match it teslls Oracle Service Cloud client to pop a new Incident record.

28

The PopNewIncidentWithContactByANI template creates a script that searches the server for a specific contact record and then
creates an incident based on the record.

When you click the Template Script PopNewIncidentWintContactByANI, this window opens.

The first box is the ServerSearch. As you see below, this ServerSearch searches against the Contact data for the Phone Number of
the current interaction. The value of the {IVR_Contact_ID} comes from the IVR and ID of the Contact will be set to the
Query_Contact_ID attribute.

PopNewIncidentWithContactByANI

29

The Next Object tab is for telling the script what to do next. In this case, it is going to the Conditional object.

Next is the Conditional object.

30

The Condition above states that: If the count of Contact Id = 1. This means that one record was found.

31

The True Action is: Then pop the Incident information.

The False Action is: Else pop the Incident information. At first glance this seems to be doing the same thing whether True or False,
but as you see in the next screen shot there is an Incident object if True and a different Incident object if False. These finish off the
Then and Else of the condition.

32

On the Incident object of the True side, it is saying pop the record as a New record. It has found the Contact record for the person
on the phone and it is popping a new Incident with that Contact information in the create form.

33

It uses the Contact information from the call for the new record.

There are no Events chosen.

To have an Event happen after the action, click the Handle Event checkbox and the options become available. You can then choose
what happens when the event is fired from Oracle Service Cloud. These events come from the workspace record in Oracle Service
Cloud.

34

35

On the False side it is saying to pop a New record for the Incident form. This is because it did not find the contact in the current
Contact data and needs to create a new Incident with new Contact information as well.

Since the Contact was not found there is nothing being passed.

There are no Events chosen.

Summary of the script:
1. Gets the ANI from the IVR.
2. Looks in the Contact data for a match to the caller.
3. If it finds a match it sends that information to the Oracles Service Cloud client and pops a new Incident on the screen with the

Contact information already there.

36

4. If it doesn't find a match it tells Oracle Service Cloud client to pop a new Incident record with no information pre-filled.

Use existing scripts
Below the Recent Scripts is a link to open an Existing Script. Exisiting Scripts are XML files on the network. If you created a script
from a template as described above, you would open it by clicking the Existing Script link and browsing to the location of where you
saved that file. Existing scripts are on the network and have not yet been saved to the server.

If scripts are saved as XML, they will show in the Recent Scripts box on the main screen. If a script is saved to the server and not
saved somewhere else, it will not show in this box.

Create a new script
You will click the link to New Script and build your own script from scratch. In Features of Interaction ScriptAssist for Oracle
Service Cloud, each object and toolbar item is described. Using these and the knowledge you can aquire from the templates, you
are allowed to create a script from scratch.

You can also use the File menu and point to New and then click Screen Pop Script.

Open a server script
If you need to modify a script that is already loaded to the server, you will click File on the menu and select Open Server Script.
Once open you can modify it you can save it back to the server, or save it somewhere on the network or your local computer. To
save it to the network or the local computer you have to export it to XML.

37

Use ScriptAssist for Oracle Service Cloud

Export a script to an XMLfile
If you want to maintain a backup of your scripts, or if you don’t currently have an IC server to which you can save a script, then you
can export the script locally as XML.

To export a script as an XML file:
1. If needed, open the script in ScriptAssist.
2. Open the File menu and click Export to XML.

ScriptAssist displays a message box explaining the process.

3. Click OK to close the message box.
4. Browse to the location where you want to save the XML file.
5. Click Save.

ScriptAssist displays a success message.
6. Click OK to close the message box.

Your script is now saved as an XML file in the location you selected. When you close the script in ScriptAssist, you will see that the
Recent Scripts section now lists it.

Import a script in an XML file
Importing a script that you previously exported as an XML file is no different from opening a script, except that you open it locally
instead of remotely on the server.

To import a script previously saved in an XML file:
1. Open the File menu and click Import from XML.

ScriptAssist displays the Open dialog box.
2. Browse to the location of the XML file and open it in ScriptAssist.

ScriptAssist creates a script based on the information in the XML file.

38

Save a script
To save the script currently displayed in the Script Creation workspace:
1. Open the File menu and click Save to Server.

ScriptAssist prompts you to enter or confirm the server name and credentials.

2. In the Name text box, type the name to use for the script.
3. If needed, type your server name, username, and password in the corresponding boxes, then click Connect to Server.

If you previously entered these values in the Preferences dialog box, then ScriptAssist pre-populates these fields. You do not
need to re-enter the same information.

4. Click Connect to Server.
ScriptAssist displays a success message if it connected to the server.

5. Click Save.

39

Add a node to a script
You can add either a standard node (object) or a special node (operation) to a script.

To add an object node to a script:
1. Create or open the script.

ScriptAssist displays the Object list and Script Creation workspace.

2. In the Script Creation workspace (1), click the node after which you want to insert the new node.
New nodes will be inserted after the selected node. If you are inserting the first node in a script, skip this step.

3. In the Object list (2), double-click the type of object node you want to insert.
ScriptAssist inserts the new node immediately after the node you clicked in Step 2.

Tip:
You can also add a node by clicking the Add Object button in the toolbar.

4. Configure the new node's properties, actions, and events as needed.

For more information, see Configure an object node.

Note:
As shown above (1, contact node), it is possible to add more than one node after another node. However, the script executes
from the top left of the diagram to the bottom right. Script branching and multithreading are not supported in the current release
of ScriptAssist. In the script shown above, the Server Search would first execute followed by the Contact node. After the
contact is saved, the script would execute a Get Properties node followed by an Incident node.

40

Delete a node from a script
To delete a node:
1. In the Script Creation workspace, click the node to delete.
2. In the script toolbar, click the Delete Object button.

ScriptAssist prompts you to confirm the deletion.
3. Click Yes in the dialog box.

ScriptAssist deletes the selected node and all of its child nodes in the script.

Configure an object node
Configure an object node by setting its action and its properties, and selecting an event for it to handle. Only the first, setting an
action, is always required.

To configure an object node:
1. In the Script Creation workspace, double-click an object node.

ScriptAssist displays the Object Configuration dialog box with the Actions tab on top.

2. In the Actions list, click the desired action.
41

CreateWorkspaceRecord to cause a screen pop of a new workspace record.
DeleteWorkspaceRecord to delete an existing workspace record on the Oracle Service Cloud server.
EditWorkspaceRecord to cause a screen pop of an existing workspace record.

Note:
The area at the bottom of the dialog displays a brief explanation of the selected action.

3. To manage a property, click the Properties tab.

You manage a property in order to apply some value (whether it is a static value or a token) to the property. Use this if you want
to pre-populate some fields on that workspace record.
To set a value on a property for the selected object, click the property in the Available Properties list and then click the Add
button.
ScriptAssist displays the Custom Property Configuration dialog box.
a. Use this dialog to set values on the managed property.

For more information about customizing properties, see Understanding and configuring node properties.
b. Click OK to close the Custom Property Configuration dialog box.
c. Manage more properties as needed.
The properties of each node type are defined by Oracle Service Cloud and are fully documented in your Oracle Service Cloud
Desktop Add-Ins documentation. When you select a property, the bottom area of the dialog shows the Oracle Service Cloud
Desktop Add-Ins documentation for that property.

4. To select an event to handle, click the Events tab. For more information, see Events that objects can handle.

42

To make the node handle a particular event, select the Handle Event check box and click the desired event in the Events list.

43

Understanding and configuring node properties
Each node in your script has properties that can store values of appropriate types. Properties allow you to apply values to the nodes
in your script.

You choose properties to which to apply values (ScriptAssist calls this "managing" the properties) on a node's Properties tab. For
more information, see Configure an object node.

You retrieve property values to use elsewhere by using a Get Properties node. For more information, see Use a Get Properties node.

Whenever you manage a property, ScriptAssist displays the Custom Property Configuration dialog box.

The main parts of the Custom Property Configuration dialog are:
Property name (1): This is the name of the property to which you can apply a value or token.
Property description (2): This is a description of the selected property. It is taken from the Oracle Service Cloud Desktop Add-
Ins documentation.
Property Type (3): This is the data type of the selected property.
Value (4): This is a combo box in which you can type or select the value of the property, such as
{IVR_Replacement_Token}.
Add/remove buttons (5): An incident can have zero or more contacts. When you manage the contact property, you can add one
or more contact objects using the (+) button, and you can remove contacts from the list with the (–) button.

44

Events that objects can handle
Handling events is a way to pause script engine execution. For example, if you create a script with three object nodes in
succession, then they would produce three nearly simultaneous screen pops. By handling an event on each object, you can
synchronize the screen pops so that they occur separately.

Use an object node's Events tab to choose an event for the object to handle. Handled event types are:
Closing: When the user initiates closing a record, the script moves on to the next node.
DataLoaded: When data has finished loading for a record, the script moves on to the next node.
Deleted: When a record is deleted, the script moves on to the next node.
Deleting: When the user initiates a delete on a record, the script moves on to the next node.
Saved: When a record has been saved, the script moves on to the next node.
Saving: When the user initiates a save on a record, the script moves on to the next node.

When you edit an object's properties, you can select one of these events on the Events tab of the Object Configuration dialog box.
For more information, see Configure an object node.

When you tell an object to handle an event, the script automatically watches for that event. When the event occurs, the script takes
it as a signal to go on to the next node.

For example, you might tell a Contact node to handle the Saved event. This would place a Saved node immediately after the Contact
node.

When the user saves the contact information in response to the screen pop, then the Contact node detects the event and the script
moves through the Saved event node on to the next node in the script. In the above example, the next node is a GetProperties node
that makes a copy of whatever values the user saved and can make those values available to the next node or any node after that.

Special node types (for script operations)
The special node types in ScriptAssist represent script operations. These node types are Server Search, Get Properties, Run Report,
and Conditional.

For more information, see the following:
Use a Server Search node
Use a Get Properties node
Use a Run Report node

Use the Server Search node to make the script engine search the Oracle Service Cloud server for specific records.

To configure a Server Search node:

Use a Server Search node

45

1. In the script toolbar, click the Server Search button.
ScriptAssist displays the Server Search dialog box.

Note:
The dialog box will not be populated when it appears. Its fields will be empty.

2. In the Search Criteria area:
a. Expand the Search Against list box and select the object type for which to search.
b. In the Field text box, add any readable field that is relevant to the object type you selected in the Search Against list box.

For a list of readable fields, see Oracle Service Cloud Connect Web Services for SOAP (Connect Web Services) found on the
Oracle Service Cloud website.

c. Expand the Operator list box and select the comparison operator to use (equals, greater than, etc.).
d. The Value field is populated for you based on your Search Against field selection. By default, it is populated with an IVR

Replacement Token. The token may be replaced with a static value, or may be renamed. If the token is renamed, it must
start and end with a brace {}.

e. The ID Token field is populated based on your Search Against field selection. By default it is populated with a Query
Replacement token. The field may be modified, but will always contain a Query Replacement Token (it cannot contain a
static value; the field won’t let you add a static value). Query Replacement Tokens always start and end with braces {}.

3. If desired, select an object node to insert immediately after the Server Search:

Note:
The script executes the next object node immediately after the server search completes.

a. Display the Next Object tab.

46

b. Select the Include Next Object check box.
c. In the API Objects list, click the object type to insert.

4. Click OK.

Search results

You can set your script to pop workspaces of search results. Due to the slow responsiveness of the Oracle Service Cloud UI,
ScriptAssist only pops a maximum of 20 workspaces.

Note:
With larger numbers of workspaces, the Oracle Service Cloud UI may be slow or temporarily unresponsive. Until the UI is done
loading, use a softphone or physical phone.

If a search returns more than 20 results, no workspaces pop. Instead, the following error appears in the logs:

WorkspaceScriptActionCommand.Execute : There are {x} records trying to pop and this is too many.
Please modify the script and run a report if more than 20 records are found.
To see more than 20 search results:
1. Modify the script
2. Run a report

47

Use the Get Properties after a Saved event to get the values on the object previously saved. You can pass those values from the Get
Properties node to any subsequent node in your script. Values are not committed to an object until the object is saved. If you want
to reference a property on an object later in the script, then there needs to be a way to capture values on that object after they have
been committed. The Get Properties node accomplishes this for you.

To configure a Get Properties node:

1. On the script toolbar, click the Get Properties button.
ScriptAssist displays the Property Tokens dialog box.

2. In the Available Properties list (1), click each property whose value you want to retrieve for use later in the script, then click the
Plus (+) button (2) next to the Add Associated Token list.
This creates a token which is a unique, meaningful name for that property's value. The token can be used later in the script to
inject the property value on some other object. To rename a property, edit the name in the Token Name box, then click the Plus
(+) button as you normally would.
To remove a token that you previously added, select it in the Add Associated Token list, then click the Minus (-) button. To
rename a token, select it in the Associated Tokens list, edit its name in the Token Name text box, and click the Plus (+) button.

3. On the Next Object tab, select the next object type for the script. Then click OK.

Use the Run Report node to make the script run one of Oracle Service Cloud's predefined reports. Reports on the Oracle Service
Cloud server might or might not require additional filters to run. The Run Report node lets you to specify any required filters to apply
to the report.

Before you use a Run Report node, you must know the Report ID (AcID) of the report you want to run. You must also know the
names of the filters that are pre-defined in the report. Both pieces of information are in the report definition.

To obtain the report ID and filter names:
1. Start the Oracle Service Cloud client.
2. In the Analytics section, double-click Reports Explorer.
3. In the Reports folders, locate the report you want to run.

Use a Get Properties node

Use a Run Report node

48

4. Right-click the report and click View Definition.
5. Note the information you need:

a. From the AcId line, note the report ID.
b. From the Filters list, note the filter names.
The filter name is the part of the filter expression that occurs to the left of the equals sign.

6. Close the Report Definition window and exit the Oracle Service Cloud client.

To configure a Run Report node:

1. On the script toolbar, click the Run Report button.
ScriptAssist displays the Report Configuration dialog box.

2. In the Report ID box (1), type the ID number of the report that the script should run.

49

You obtain this ID from the Analytics section of the Oracle Service Cloud client.

3. If the report you selected requires a filter, click the Add Filter button to add a filter to the Report Filters list (2).

Note:
Before adding a filter in the Report Configuration window, first add a filter of the configuration to the report in Oracle
Service Cloud. This filter then appears in a list of filters associated with the report in Oracle Service Cloud.

To delete a filter from the list, select it and click the Delete Filter button.
4. In the Filter Configuration area (3), enter the expression to match, the comparison operator, and the value to match in the

corresponding boxes. The expression should match a field found in the report's filter definition.
5. If needed, click the Next Object tab and select a next object for the script.
6. Click OK.

Use a Conditional node
Use a Conditional node after a Server Search node to include one API object or another based on whether or not a condition is true.

To configure a conditional node:

1. On the script toolbar, click the Conditional button.
ScriptAssist displays the Conditional dialog box.

2. In the Available ServerSearch Tokens list (1), select the token name to use in the conditional expression.
3. In the Condition Evaluation group box (2), construct the expression:

a. The Token Name text box shows the token that will be evaluated for the condition.
b. In the Operator combo box, select the desired operator for the expression.
c. In the Record Count box, use the up and down buttons to enter the value for the expression.

50

Note:
Although you can create a conditional step that checks if the token contains more than twenty results and then takes the
true path, ScriptAssist currently has a limit of twenty screen pops. If a screen pop script requests more than twenty screen
pops to occur at runtime, then an overflow condition is met and an error is traced to the logs. In this case, the rest of the
script is abandoned. It is therefore important to create screen pop scripts that are focused and pop only a small number of
records. You can create a pre-configured report in Oracle Service Cloud that pops if more than twenty records are returned.

4. On the True Action tab:

a. Select the Include object for true condition check box.
b. In the API Objects list, select the type of object to create if the conditional expression is true.

5. On the False Action tab:

51

a. Select the Include object for false condition check box.
b. In the API Objects list, select the type of object to create if the conditional expression is false.

6. Click OK.

Order of script node execution
When you create or edit a script in the ScriptAssist Script Creation workspace, the script nodes will execute from the top left to the
bottom right.

The current release of ScriptAssist does not support script branching or multithreading, so each script executes in a linear fashion.

Execution flows from the first node, through all child nodes of that node; then to the next node, and through all child nodes; then to
the next node, and so forth.

For example, suppose that you have one root node with a very large branch under it, and then a second root node (far down the
script with the vertical dashed line). The second node will not be executed until the branch under the first node has finished
executing. In this way, the script is entirely linear, even though it does not appear to be linear.

The following sections show three different examples of the order in which scripts execute.

In a linear structure with a single root node, the script executes in linear fashion from the top left to the bottom right.

The script goes from Contact to Saved, Incident, Saved, and finally to Opportunity.

In a branched structure with more than one root node, the script executes first from the initial root node (1) to the bottom right of
the diagram (2). Only after it completes execution of this branch does it finally go to the other root node (3) and begin to execute
that branch.

Linear execution with a single root node

Branched execution with an additional root node

52

In a branched structure with a conditional node, the script executes from top left to bottom right until it reaches the conditional
node (1). At that point, the script follows one branch if the condition is true (2) and the other branch if it is false (3).

Note that when the script follows one branch of a conditional node, then the script will not execute the other branch of the
conditional node.

Branched execution with a conditional node

53

Configure custom actions
Note:
Genesys assumes that you know how to use Interaction Administrator and Interaction Attendant and that you have installed
Interaction ScriptAssist. For more information about those programs, see the following:

Interaction Administrator Help at
https://help.genesys.com/cic/mergedProjects/wh_ia/desktop/interaction_administrator_help.htm
Interaction Attendant Help at https://help.genesys.com/cic/mergedProjects/wh_iat/desktop/interaction_attendant_help.htm

Interaction ScriptAssist includes three ready-to-use script templates for screen pops:
PopContactByANI
PopIncidentByRefNo
PopNewIncidentWithContactByANI

These templates are described in detail in Basics of scripts in ScriptAssist for Oracle Service Cloud.

To use these templates:
1. In Interaction ScriptAssist: Open the template and save it to the server.
2. In Interaction Attendant: Create a screen pop node and point it to an ACD workgroup.
3. In Interaction Administrator: Optionally assign a screen pop action directly to a workgroup.

Enable Interaction Attendant to use the template script
The screen pop templates do not cause screen pops in the Oracle Service Cloud client until you inject them into a call flow. To do
that, you can modify an Interaction Attendant profile to include the screen pop script.

To enable Interaction Attendant to use the script:
1. In Interaction Attendant on the IC server, locate the profile and schedule to which you want to apply the Oracle Service Cloud

screen pop.
2. Create a screen pop node for the script that you want to set up:

a. Click the schedule for the screen pop.
b. On the Insert menu, point to New Operation, then click Screen Pop.

3. On the panel, complete the following steps.

54

https://help.genesys.com/cic/mergedProjects/wh_ia/desktop/interaction_administrator_help.htm
https://help.genesys.com/cic/mergedProjects/wh_iat/desktop/interaction_attendant_help.htm

4. Specify the node characteristics.
a. Give it a name.
b. Optionally give it a digit.
c. Select the Active check box.
d. Optionally select the Default Action check box.

5. Specify the appropriate screen pop action, such as PopContactByANI.
a. Set the Screen Pop Action.
b. Fill in the value for the attribute that is listed under the Values section.

6. Specify the action to take when the subroutine is finished.
7. The action usually transfers the interaction to a workgroup so that it can be routed to the Oracle Service Cloud client.

Note:
For more information about creating nodes, see Interaction Attendant documentation.

Some screen pop scripts must prompt the caller for information, and then set that information as an input value on the script. To
accomplish this behavior:

Use a Caller Data Entry node to prompt the caller for the required information.
Store the data to a custom call attribute such as IncidentIdAttr.
Using the data, set the name/value pair on the screen pop action in the Screen Pop node by specifying the call attribute name
prepended with a dollar sign: for example, $(IncidentIdAttr).

By doing this prompt work in Interaction Attendant, you can eliminate the need for custom handlers.

55

By using Interaction Attendant to implement the screen pop script, you can include the script if your caller dials through a certain
sequence of Interaction Attendant nodes.

Another implementation strategy takes advantage of the ACD Alerting Action field in the ACD Actions pane in the workgroup
configuration. This action applies the screen pop script to any interaction that is added to the queue. To implement this strategy,
modify the default values in the script and apply the script as an alerting action through Interaction Administrator.

Note:
If you used Interaction Attendant to assign input parameter values, skip this section. Also, this step can be done before the
Interaction Attendant step.

If you choose to apply the screen pop script directly to the workgroup by means of Actions, then update the script parameters to
include default values.

To assign a default value using Interaction Administrator:
1. In Interaction Administrator, locate System Configuration Actions.
2. Open the screen pop script to which you want to assign default values.
3. Click the script input item and click Edit.
4. Enter or assign a default value to the script input item:

5. Click OK.

Enable a workgroup to use the template script

Assign default values to script parameters

56

After you have set the default values on the script, an alerting action can assign the script to a workgroup queue.

To assign the script to a workgroup queue:
1. In Interaction Administrator, locate the Workgroups node.
2. Open the Workgroup Configuration dialog box for the workgroup to which you want to apply the script.
3. Click the ACD tab.
4. In the list, click Actions.
5. In the Alerting Action list, select the screen pop script.

6. Click OK.

Summary of steps and results
When you configured custom actions:

You saved the PopContactByANI template script to the IC server from Interaction ScriptAssist.
You updated the Interaction Attendant inbound call configuration. The configuration provides a way to apply the template
screen pop script to the incoming calls using the Screen Pop operation in Interaction Attendant.
You applied the screen pop script directly to a workgroup using the ACD Actions dialog box in Interaction Administrator.

With these tasks completed, screen pops work in the Oracle Service Cloud client. If a call comes in and the caller's ANI matches a
contact record's phone number in the Oracle Service Cloud system, then that contact's record pops. If there is no contact to match
the ANI, then no screen pop occurs.

Assign the screen pop script to a workgroup queue

57

Customization points for Interaction Designer
Genesys has provided a number of customization points in the integration handler set. However, do not attempt customization
unless you have advanced knowledge of CIC handlers and intimate "under the hood" experience with the IC Integration with Oracle
Service Cloud.

The Integration Service allows you to route Oracle Service Cloud incidents through the CIC platform using the ACD routing engine.
By default, the integration looks for the incident screen pop script to apply to routed interactions so that the routed interaction is
automatically screen popped on the agent desktop. The handlers locate this default script in one of two ways:

They first look for an Oracle Service Cloud screen pop action in DS with name: <Queue Name>_QueueEmailScript. You can
create queue-specific, incident screen pop scripts based on the CIC queue to which the Oracle Service Cloud incident is routed.
If the handlers do not find a queue-specific incident script, then they look for an Oracle Service Cloud screen pop action called
DefaultEmailScript and apply that script. The integration installs this default screen pop script automatically.

Handle the incident screen pop script for routed interactions

58

Change log
The following table lists the changes to the Interaction ScriptAssist for Oracle Service Cloud Technical Reference since its initial
release.

Date Changes

12-July-2012 Updated copyrights and made minor tweaks.

24-January-2013 Removed Using Advanced Mode section.
Updated Preferences screenshot.

09-September-2014 Updated documentation to reflect changes required in the transition to CIC 2015 R1, such as updates to
product version numbers, system requirements, installation procedures, references to Interactive
Intelligence Product Information site URLs, and copyright and trademark information.
Updated product name from RightNow to Oracle Service Cloud.
Modified three screenshots.
Added and updated Using Advanced Mode section.

29-September-2014 Changed the title to Interaction ScriptAssist for Oracle Service Cloud.
Updated all references to RightNow that needed to be updated.

03-December-2014 Added most of Chapter 2, Using the Templates.
Added Chapter 4, took it from the Install and Config guide of the Interactive Intelligence Integration with
Oracle Service Cloud.
Updated the RightNow references to Oracle Service Cloud.

03-February-2015 Added Support of the Oracle Service Cloud UI section.

10-April-2015 Added Search results section, which explains what happens when search results are greater than 20
items.
Added a note in the Use a Run Report node section about adding filters.
Updated for 2015 R3.

30-April-2015 Removed section Support of the Oracle Service Cloud UI.

04-August-2015 Updated for 2015 R4.

09-October-2015 Updated for 2016 R1.

20-October-2015 Updated info in Search results section, which explains what happens when search results are greater than 20
items.

21-December-2015 Updated for 2016 R2.

11-May-2016 Updated Title page and Copyright and Trademarks page.

02-May-2018 Rebranded from Interactive Intelligence to Genesys.

20-June-2019 Reorganized the content only, which included combining some topics and deleting others that just had an
introductory sentence such as, "In this section...".

59

	Table of Contents
	Features of Interaction ScriptAssist for Oracle Service Cloud
	ScriptAssist start page
	Basic page elements
	Template scripts
	Edit a script

	ScriptAssist editor page
	Basic page elements

	Basic features of ScriptAssist
	Basic node types (objects)
	Script toolbars
	Special node types (operations)

	Basics of scripts in ScriptAssist for Oracle Service Cloud
	Set preferences for Interaction ScriptAssist
	Options | CIC Connection tab
	Options | Oracle Service Cloud Connection tab
	Use Advanced Mode

	Basics of building scripts
	Use the templates
	PopContactByANI
	PopIncidentByRefNo
	PopNewIncidentWithContactByANI

	Use existing scripts
	Create a new script
	Open a server script

	Use ScriptAssist for Oracle Service Cloud
	Export a script to an XMLfile
	Import a script in an XML file
	Save a script
	Add a node to a script
	Delete a node from a script
	Configure an object node
	Understanding and configuring node properties
	Events that objects can handle
	Special node types (for script operations)
	Use a Server Search node
	Search results

	Use a Get Properties node
	Use a Run Report node

	Use a Conditional node
	Order of script node execution
	Linear execution with a single root node
	Branched execution with an additional root node
	Branched execution with a conditional node

	Configure custom actions
	Enable Interaction Attendant to use the template script
	Enable a workgroup to use the template script
	Assign default values to script parameters
	Assign the screen pop script to a workgroup queue

	Summary of steps and results
	Customization points for Interaction Designer
	Handle the incident screen pop script for routed interactions

	Change log

